Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 570: 286-299, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32163790

ABSTRACT

Three-dimensional nitrogen-doped carbon network incorporated with nickel@nickel oxide core-shell nanoparticles composite (3D NC/Ni@NiO) has been facilely prepared, self-templated by the cross-linked polyacrylamide aerogel precursor containing NiCl2. Characterizations reveal that the Ni@NiO nanoparticles distribute homogeneously in the 3D nitrogen-doped carbon matrix and the composite is of hierarchical porous structure. When used as supercapacitor electrode in a three-electrode system, the 3D NC/Ni@NiO exhibits enhanced electrical conductivity and excellent electrochemical performance, presenting a high specific capacitance (389F g-1 at 5 mV s-1), good rate capability (276 F g-1 at 100 mV s-1) and outstanding cycling performance (with the capacitance retention of 70.2% after 5000 charge-discharge cycles). This is due to the synergistic effects of conductive metallic nickel, pseudocapacitive nickel oxide as well as in situ nitrogen doping of carbon network. Moreover, an asymmetric supercapacitor (ASC) was fabricated with NC/Ni@NiO as positive electrode and active carbon as negative electrode. The ASC device exhibits a maximum energy density of 19.4 W h kg-1 at a power density of 700 W kg-1 and shows good cycling stability (73.8% capacity retention after 3000 cycles), indicating that it has great promise for practical energy storage and conversion application.

2.
Environ Technol ; 41(17): 2157-2164, 2020 Jul.
Article in English | MEDLINE | ID: mdl-30526390

ABSTRACT

Cu2O/hollow mesoporous silica (HMS) composite was synthesized using HMS as supporting material by the impregnation method. This composite displayed integrated physicochemical performance of Cu2O and HMS, resulting in low density, large surface area and excellent dispersibility. The synthesized nano-sized composite of Cu2O/HMS demonstrated rapid and effective removal for methylene blue with an efficiency of 99.8% with the reaction time of 5 min. Moreover, the Cu2O/HMS composite exhibited high stability and present no obvious performance degradation after seven cycles. The dye removal efficiency stood up to 89% even after 15 cycles. The improved properties of Cu2O/HMS are possibly the account of the collaborative effect between the mesoporous adsorption with Cu2O photocatalysis.


Subject(s)
Methylene Blue , Silicon Dioxide , Adsorption
3.
Mikrochim Acta ; 186(11): 743, 2019 11 04.
Article in English | MEDLINE | ID: mdl-31686218

ABSTRACT

This work describes the synthesis of a nanocomposite consisting of Ag2O, silver nanoparticles and N,S-doped carbon quantum dots (Ag2O/Ag@NS-CQD). The NS-CQD were prepared by hydrothermal treatment of p-aminobenzenesulfonic acid. They act as both the reducing and stabilizing agent for synthesis of Ag2O/Ag@NS-CQD. The composite was characterized by UV-vis spectroscopy, transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The glassy carbon electrode (GCE) was modified by coating it with Ag2O/Ag@NS-CQD. It exhibits excellent amperometric response to catechol, typically at a low working potential of around 0.25 V. Under the best experimental conditions, the sensor has a wide linear response (0.2 to 180 µM) and a low detection limit (13 nM; at S/N = 3). The method was applied to analysis of spiked water samples and gave satisfactory results. Graphical abstract Schematic representation of the preparation of the Ag/Ag2O@N,S-doped carbon quantum dots composite using p-aminobenzenesulfonic acid and silver nitrate as the starting materials. The corresponding modified glassy carbon electrode exhibits the excellent amperometric sensing performance toward catechol at pH 7.0 with low detection limit and good selectivity.

4.
J Colloid Interface Sci ; 552: 671-677, 2019 Sep 15.
Article in English | MEDLINE | ID: mdl-31176050

ABSTRACT

It is highly essential but challengeable to explore the earth-abundant and low-cost oxygen evolution reaction catalysts to replace Ir- or/and Ru-based ones. In this article, we report an in situ growth of ultrathin NiFe layered double hydroxide nanosheets on reduced graphene oxide in formamide aqueous solution followed by simple chemical reduction. These ultrathin layered double hydroxide nanosheets in the composite occur in single- or multi-layer forms on reduced graphene oxide matrix. Consequently, the obtained catalyst exhibits the enhanced BET surface area and electrochemically active surface area, and low mass transfer resistance. This electrocatalyst displays the excellent OER activity with a small onset potential of 233 mV. Additionally, it only requires an overpotential of 254 mV to achieving current density of 10 mA cm-2, and can gives a current density of 70.60 mA cm-2 at overpotential of 300 mV in 0.1 M KOH. It also demonstrates the robust long-time electrochemical durability.

5.
Langmuir ; 35(13): 4634-4645, 2019 Apr 02.
Article in English | MEDLINE | ID: mdl-30855972

ABSTRACT

The photoresponsive wormlike micelles constructed by Gemini surfactants and cinnamate derivatives play a great role in the field of smart materials. However, how the structure of cinnamate derivatives affects the photoresponsive behavior of micelles is still a hotspot for scientists to research. Here, three kinds of aromatic salts with different ortho-substituted groups including trans- o-methoxy cinnamate ( trans-OMCA), trans- o-hydroxy cinnamate ( trans-OHCA), and trans-cinnamate ( trans-CA) were introduced into Gemini surfactant 12-3-12·2Br- aqueous solutions to construct photoresponsive wormlike micelles through their noncovalent interactions. Their properties were researched using the rheological method, cryo-transmission electron microscopy, and 1H NMR and two-dimensional nuclear Overhauser effect spectra. The results show that these cinnamate derivatives could well construct wormlike micelles with 12-3-12·2Br-. Furthermore, subtle differences in the ortho substituents' structure have a significant effect on the photoresponsive behavior of formed wormlike micelles. Specifically, the zero viscosity (η0) of 40 mM 12-3-12·2Br-/24 mM trans-OHCA mixed solution decreases from 26.72 to 2.6 Pa·s with the shortening of the length of wormlike micelles after UV irradiation. Correspondingly, the η0 for the same ratio of 12-3-12·2Br-/ trans-OMCA decreases from 2.42 to 0.06 Pa·s and the wormlike micelles are transited into rodlike micelles and even spherical micelles after the same UV irradiation time. However, the variation of wormlike micelles in the 12-3-12·2Br-/ trans-CA system induced by UV light is not obvious with η0 being maintained at around 2.89 Pa·s. This study will help us better understand the effects of chemical groups on macrophenomena and microinteraction for micellar systems. It provides a theoretical basis for the construction of photoresponsive micelles, thus widening their application in the field of soft materials.

6.
Langmuir ; 34(43): 12990-12999, 2018 10 30.
Article in English | MEDLINE | ID: mdl-30289724

ABSTRACT

Photoresponsive systems with adjustable self-assembly morphologies and tunable rheological properties have aroused widespread concern of researchers in recent years because of their prospect applications in controlled release, microfluidics, sensors, and so forth. In this paper, we combine a cationic Gemini surfactant 12-3-12·2Br- and trans-2-methoxy-cinnamate ( trans-OMCA) together to create a representative UV-responsive self-assembly system. The system displays abundant self-assembly behaviors, and the self-assemblies with different states and different scales including wormlike micelles, vesicles, and lyotropic liquid crystals (LCs) as well as an aqueous two-phase system (ATPS) are observed even at lower surfactant concentration. The UV-responsive behavior of the formed self-assemblies is investigated systematically. The results have shown that the photoisomerization of OMCA from trans form to cis form under UV light irradiation alters the hydrophobicity and steric hindrance effect of OMCA and thus affects the molecular packing at the micellar interface and further leads to the transformation of assembly morphologies. The long wormlike micelles can gradually transform into much shorter rodlike micelles under UV irradiation and companied by the decrease of solution viscosity by 2 orders of magnitude. In addition, the vesicles can evolve into multistate self-assembly structures including the ATPS, wormlike micelles, rod-like micelles, and small spherical micelles depending on the UV irradiation time. The ATPS and its adjacent anisotropic LC phase can respectively combine into a single phase and separate into ATPS under UV irradiation. The morphologies of assemblies in the 12-3-12·2Br-/ trans-OMCA mixed system can be tailored by adjusting the system composition and duration of UV light irradiation on purpose. The photoresponsive system with abundant self-assembly behaviors and tunable rheological properties has wide application prospect in numerous fields such as drug delivery, materials science, smart fluids, and so forth, and the macroscopic phase separation and combination provide novel strategies for effective separation and purification of certain substances.

7.
RSC Adv ; 8(29): 16004-16012, 2018 Apr 27.
Article in English | MEDLINE | ID: mdl-35542184

ABSTRACT

Photoresponsive micellar systems with adjustable aggregate morphologies and rheological properties may be useful in a number of fields such as in microfluidics, controlled release, and sensors. However, the complexity and great difficulty of synthesising photosensitive molecules hamper their practical applications to a significant degree. In this study, we constructed a novel photoinduced self-assembly system by introducing the photoresponsive derivative trans-2-methoxy-cinnamate (trans-OMCA) into the gemini surfactant N,N'-bis(dodecyldimethyl)-1,2-ethane diammonium dibromide (12-2-12·2Br-) solutions. The system displays abundant phase behaviors, and the long worm-like micelles, vesicles, as well as an aqueous two-phase system (ATPS) are observed in the 12-2-12·2Br-/trans-OMCA mixed system even at lower surfactant concentrations. The UV-responsive behavior of the formed vesicles and the worm-like micelles is investigated systematically. The results have shown that OMCA undergoes photoisomerization from the trans-form to the cis-form through UV light irradiation that alters the molecular packing at the micellar interface and thus leads to the transformation of micellar morphologies. The long worm-like micelles will turn into much shorter units when the sample is exposed to 365 nm UV light accompanied by a decrease in solution viscosity by more than an order of magnitude. The formed vesicle system, however, can be utilized to generate a multi-state self-assembly structure, including a worm-like micelle and a small spherical micelle, depending on the UV irradiation time. The morphologies of micelles in a 12-2-12·2Br-/trans-OMCA mixed system can be tailored by adjusting the system composition and the duration of UV light irradiation. Correspondingly, the rheological behavior of the 12-2-12·2Br-/trans-OMCA mixed system can be purposely tuned. The light-induced system with abundant self-assembly behaviors and tunable rheological properties would widen the potential application of gemini surfactants in drug delivery, smart fluids, and materials science.

SELECTION OF CITATIONS
SEARCH DETAIL
...