Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Carbohydr Polym ; 336: 122102, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38670773

ABSTRACT

Skin wounds are susceptible to infection, leading to severe inflammatory reactions that can progress to chronic wounds, ultimately causing significant physical and mental distress to the patient. In this study, we propose an injectable composite hydrogel achieved through one-pot gelation of oxidized xyloglucan (OXG), cationic polyamide ε-poly-l-lysine (EPL), and surface amino-rich silicon nanoparticles (SiNPs). OXG exhibits commendable anti-inflammatory properties and provides crosslinking sites. SiNPs serve as mechanically reinforced crosslinkers, facilitating the construction of a dynamic Schiff base network. SiNPs significantly reduced the gelation time to 3 s and tripled the storage modulus of the hydrogels. Additionally, the combination of EPL and SiNPs demonstrated synergistic antimicrobial activity against both S. aureus and E. coli. Notably, the hydrogel effectively halted liver bleeding within 30 s. The hydrogel demonstrated outstanding shear-thinning and self-healing properties, crucial considerations for the design of injectable hydrogels. Furthermore, its efficacy was evaluated as a wound dressing in a mouse model with S. aureus infection. The results indicated that, compared to commercial products, the hydrogel exhibited a shorter wound healing time, decreased inflammation, thinner epithelium, increased hair follicles, enhanced neovascularization, and more substantial collagen deposition. These findings strongly suggest the promising potential of the proposed hydrogel as an effective wound dressing for the treatment of infected wounds.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Glucans , Hydrogels , Nanoparticles , Polylysine , Staphylococcus aureus , Wound Healing , Xylans , Glucans/chemistry , Glucans/pharmacology , Animals , Wound Healing/drug effects , Xylans/chemistry , Xylans/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Polylysine/chemistry , Polylysine/pharmacology , Mice , Nanoparticles/chemistry , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/administration & dosage , Staphylococcal Infections/drug therapy , Cross-Linking Reagents/chemistry , Wound Infection/drug therapy , Male
2.
Adv Healthc Mater ; : e2400071, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38501563

ABSTRACT

The treatment of infected wounds remains a challenging biomedical problem. Some bioactive small-molecule hydrogelators with unique rigid structures can self-assemble into supramolecular hydrogels for wound healing. However, they are still suffered from low structural stability and bio-functionality. Herein, a supramolecular hydrogel antibacterial dressing with a dual nanofibrillar network structure is proposed. A nanofibrillar network created by a small-molecule hydrogelator, puerarin extracted from the traditional Chinese medicine Pueraria, is interconnected with a secondary macromolecular silk fibroin nanofibrillar network induced by Ga ions via charge-induced supramolecular self-assembly. The resulting hydrogel features adequate mechanical strength for sustainable retention at wounds. Good biocompatibility and efficient bacterial inhibition are obtained when the Ga ion concentration is 0.05%. Otherwise, the substantial release of Ga ions and puerarin endows the hydrogel with excellent hemostatic and antioxidative properties. In vivo, evaluation of a mouse-infected wound model demonstrates that its healing effect outperformed that of a commercially available silver-containing wound dressing. The experimental group successfully achieves a 100% wound closure rate on day 10. This study sheds new light on the design of nanofibrillar hydrogels based on supramolecular self-assembly of naturally derived bioactive molecules as well as their clinical use for treating chronic infected wounds.

3.
Int J Biol Macromol ; 266(Pt 1): 131170, 2024 May.
Article in English | MEDLINE | ID: mdl-38554906

ABSTRACT

Skin wound healing is a complex and dynamic process involving hemostasis, inflammatory response, cell proliferation and migration, and angiogenesis. Currently used wound dressings remain unsatisfactory in the clinic due to the lack of adjustable mechanical property for injection operation and bioactivity for accelerating wound healing. In this work, an "all-sugar" hydrogel dressing is developed based on dynamic borate bonding network between the hydroxyl groups of okra polysaccharide (OP) and xyloglucan (XG). Benefiting from the reversible crosslinking network, the resulting composite XG/OP hydrogels exhibited good shear-thinning and fast self-healing properties, which is suitable to be injected at wound beds and filled into irregular injured site. Besides, the proposed XG/OP hydrogels showed efficient antioxidant capacity by scavenging DPPH activity of 73.9 %. In vivo experiments demonstrated that XG/OP hydrogels performed hemostasis and accelerated wound healing with reduced inflammation, enhanced collagen deposition and angiogenesis. This plant-derived dynamic hydrogel offers a facile and effective approach for wound management and has great potential for clinical translation in feature.


Subject(s)
Antioxidants , Hydrogels , Neovascularization, Physiologic , Polysaccharides , Wound Healing , Wound Healing/drug effects , Hydrogels/chemistry , Hydrogels/pharmacology , Antioxidants/pharmacology , Antioxidants/chemistry , Animals , Polysaccharides/chemistry , Polysaccharides/pharmacology , Neovascularization, Physiologic/drug effects , Abelmoschus/chemistry , Glucans/chemistry , Glucans/pharmacology , Xylans/chemistry , Xylans/pharmacology , Mice , Rats , Male , Humans , Angiogenesis
4.
Materials (Basel) ; 15(17)2022 Sep 04.
Article in English | MEDLINE | ID: mdl-36079516

ABSTRACT

The finite element method (FEM) is used to investigate the free and forced vibration characteristics of functionally graded graphene-nanoplatelet-reinforced composite (FG-GPLRC) beams. The weight fraction of graphene nanoplatelets (GPLs) is assumed to vary continuously along the beam thickness according to a linear, parabolic, or uniform pattern. For the FG-GPLRC beam, the modified Halpin-Tsai micromechanics model is used to calculate the effective Young's modulus, and the rule of mixture is used to determine the effective Poisson's ratio and mass density. Based on the principle of virtual work under the assumptions of the Euler-Bernoulli beam theory, finite element formulations are derived to analyze the free and forced vibration characteristics of FG-GPLRC beams. A two-node beam element with six degrees of freedom is adopted to discretize the beam, and the corresponding stiffness matrix and mass matrix containing information on the variation of material properties can be derived. On this basis, the natural frequencies and the response amplitudes under external forces are calculated by the FEM. The performance of the proposed FEM is assessed, with some numerical results obtained by layering method and available in published literature. The comparison results show that the proposed FEM is capable of analyzing an FG-GPLRC beam. A detailed parametric investigation is carried out to study the effects of GPL weight fraction, distribution pattern, and dimensions on the free and forced vibration responses of the beam. Numerical results show that the above-mentioned effects play an important role with respect to the vibration behaviors of the beam.

5.
Front Pharmacol ; 12: 706225, 2021.
Article in English | MEDLINE | ID: mdl-34248648

ABSTRACT

Background and Purpose: Temporal lobe epilepsy (TLE) is a common chronic neurological disease that is often invulnerable to anti-epileptic drugs. Increasing data have demonstrated that acetylcholine (ACh) and cholinergic neurotransmission are involved in the pathophysiology of epilepsy. Cytisine, a full agonist of α7 nicotinic acetylcholine receptors (α7nAChRs) and a partial agonist of α4ß2nAChRs, has been widely applied for smoking cessation and has shown neuroprotection in neurological diseases. However, whether cytisine plays a role in treating TLE has not yet been determined. Experimental Approach: In this study, cytisine was injected intraperitoneally into pilocarpine-induced epileptic rats for three weeks. Alpha-bungarotoxin (α-bgt), a specific α7nAChR antagonist, was used to evaluate the mechanism of action of cytisine. Rats were assayed for the occurrence of seizures and cognitive function by video surveillance and Morris water maze. Hippocampal injuries and synaptic structure were assessed by Nissl staining and Golgi staining. Furthermore, levels of glutamate, γ-aminobutyric acid (GABA), ACh, and α7nAChRs were measured. Results: Cytisine significantly reduced seizures and hippocampal damage while improving cognition and inhibiting synaptic remodeling in TLE rats. Additionally, cytisine decreased glutamate levels without altering GABA levels, and increased ACh levels and α7nAChR expression in the hippocampi of TLE rats. α-bgt antagonized the above-mentioned effects of cytisine treatment. Conclusion and Implications: Taken together, these findings indicate that cytisine exerted an anti-epileptic and neuroprotective effect in TLE rats via activation of α7nAChRs, which was associated with a decrease in glutamate levels, inhibition of synaptic remodeling, and improvement of cholinergic transmission in the hippocampus. Hence, our findings not only suggest that cytisine represents a promising anti-epileptic drug, but provides evidence of α7nAChRs as a novel therapeutic target for TLE.

SELECTION OF CITATIONS
SEARCH DETAIL
...