Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Hum Genet ; 110(5): 863-879, 2023 05 04.
Article in English | MEDLINE | ID: mdl-37146589

ABSTRACT

Deleterious mutations in the X-linked gene encoding ornithine transcarbamylase (OTC) cause the most common urea cycle disorder, OTC deficiency. This rare but highly actionable disease can present with severe neonatal onset in males or with later onset in either sex. Individuals with neonatal onset appear normal at birth but rapidly develop hyperammonemia, which can progress to cerebral edema, coma, and death, outcomes ameliorated by rapid diagnosis and treatment. Here, we develop a high-throughput functional assay for human OTC and individually measure the impact of 1,570 variants, 84% of all SNV-accessible missense mutations. Comparison to existing clinical significance calls, demonstrated that our assay distinguishes known benign from pathogenic variants and variants with neonatal onset from late-onset disease presentation. This functional stratification allowed us to identify score ranges corresponding to clinically relevant levels of impairment of OTC activity. Examining the results of our assay in the context of protein structure further allowed us to identify a 13 amino acid domain, the SMG loop, whose function appears to be required in human cells but not in yeast. Finally, inclusion of our data as PS3 evidence under the current ACMG guidelines, in a pilot reclassification of 34 variants with complete loss of activity, would change the classification of 22 from variants of unknown significance to clinically actionable likely pathogenic variants. These results illustrate how large-scale functional assays are especially powerful when applied to rare genetic diseases.


Subject(s)
Hyperammonemia , Ornithine Carbamoyltransferase Deficiency Disease , Ornithine Carbamoyltransferase , Humans , Amino Acid Substitution , Hyperammonemia/etiology , Hyperammonemia/genetics , Mutation, Missense/genetics , Ornithine Carbamoyltransferase/genetics , Ornithine Carbamoyltransferase Deficiency Disease/genetics , Ornithine Carbamoyltransferase Deficiency Disease/diagnosis , Ornithine Carbamoyltransferase Deficiency Disease/therapy
2.
J Hand Surg Am ; 29(2): 230-5, 2004 Mar.
Article in English | MEDLINE | ID: mdl-15043894

ABSTRACT

PURPOSE: Postoperative adhesions frequently compromise the success of flexor tendon repair. Manipulation of growth factors responsible for scar formation may be a method of decreasing adhesion formation. Transforming growth factor beta (TGF-beta) is a key cytokine in the pathogenesis of tissue fibrosis. The purpose of this study was to examine the effectiveness of TGF-beta neutralizing antibody in blocking TGF-beta-induced collagen I production in rabbit flexor tendons in vitro. METHODS: Sheath fibroblasts, epitenon tenocytes, and endotenon tenocytes were obtained from rabbit flexor tendons. Each cell culture was supplemented with 1 ng/mL of TGF-beta along with increasing doses of TGF-beta neutralizing antibody (0.1-2.0 microg/mL). Collagen I production was measured by enzyme-linked immunoabsorbent assay and TGF-beta bioactivity was measured by the luciferase assay. Results were compared with TGF-beta alone and unsupplemented controls. RESULTS: The addition of neutralizing antibody significantly reduced TGF-beta-induced collagen I production in a dose-dependent manner in all 3 cell cultures. TGF-beta bioactivity was also reduced by its neutralizing antibody. CONCLUSIONS: This study shows that TGF-beta inhibition through its neutralizing antibody was effective in cultured flexor tendon cells. The results encourage further experiments that use such agents to modulate flexor tendon wound healing in in vivo models in the hope of eventually blocking the effect of TGF-beta on flexor tendons clinically.


Subject(s)
Collagen Type I/biosynthesis , Transforming Growth Factor beta/physiology , Animals , Cells, Cultured , Dose-Response Relationship, Drug , Enzyme-Linked Immunosorbent Assay , Male , Rabbits , Tendon Injuries/physiopathology , Tendons/metabolism , Up-Regulation , Wound Healing
SELECTION OF CITATIONS
SEARCH DETAIL
...