Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
2.
Science ; 384(6698): 885-890, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38781365

ABSTRACT

Men or mice with homozygous serine/threonine kinase 33 (STK33) mutations are sterile owing to defective sperm morphology and motility. To chemically evaluate STK33 for male contraception with STK33-specific inhibitors, we screened our multibillion-compound collection of DNA-encoded chemical libraries, uncovered potent STK33-specific inhibitors, determined the STK33 kinase domain structure bound with a truncated hit CDD-2211, and generated an optimized hit CDD-2807 that demonstrates nanomolar cellular potency (half-maximal inhibitory concentration = 9.2 nanomolar) and favorable metabolic stability. In mice, CDD-2807 exhibited no toxicity, efficiently crossed the blood-testis barrier, did not accumulate in brain, and induced a reversible contraceptive effect that phenocopied genetic STK33 perturbations without altering testis size. Thus, STK33 is a chemically validated, nonhormonal contraceptive target, and CDD-2807 is an effective tool compound.


Subject(s)
Contraception , Contraceptive Agents, Male , Protein Kinase Inhibitors , Protein Serine-Threonine Kinases , Small Molecule Libraries , Animals , Humans , Male , Mice , Blood-Testis Barrier/metabolism , Contraceptive Agents, Male/chemistry , Contraceptive Agents, Male/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/chemistry , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Testis/drug effects , Contraception/methods , Structure-Activity Relationship
3.
Angew Chem Int Ed Engl ; 63(23): e202405197, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38574245

ABSTRACT

Mammalian cytochrome P450 drug-metabolizing enzymes rarely cleave carbon-carbon (C-C) bonds and the mechanisms of such cleavages are largely unknown. We identified two unusual cleavages of non-polar, unstrained C(sp2)-C(sp3) bonds in the FDA-approved tyrosine kinase inhibitor pexidartinib that are mediated by CYP3A4/5, the major human phase I drug metabolizing enzymes. Using a synthetic ketone, we rule out the Baeyer-Villiger oxidation mechanism that is commonly invoked to address P450-mediated C-C bond cleavages. Our studies in 18O2 and H2 18O enriched systems reveal two unusual distinct mechanisms of C-C bond cleavage: one bond is cleaved by CYP3A-mediated ipso-addition of oxygen to a C(sp2) site of N-protected pyridin-2-amines, and the other occurs by a pseudo-retro-aldol reaction after hydroxylation of a C(sp3) site. This is the first report of CYP3A-mediated C-C bond cleavage in drug metabolism via ipso-addition of oxygen mediated mechanism. CYP3A-mediated ipso-addition is also implicated in the regioselective C-C cleavages of several pexidartinib analogs. The regiospecificity of CYP3A-catalyzed oxygen ipso-addition under environmentally friendly conditions may be attractive and inspire biomimetic or P450-engineering methods to address the challenging task of C-C bond cleavages.


Subject(s)
Cytochrome P-450 CYP3A , Oxygen , Oxygen/chemistry , Oxygen/metabolism , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 CYP3A/chemistry , Humans , Molecular Structure , Carbon/chemistry , Carbon/metabolism , Oxidation-Reduction
4.
bioRxiv ; 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37873358

ABSTRACT

Small molecules that can induce protein degradation by inducing proximity between a desired target and an E3 ligase have the potential to greatly expand the number of proteins that can be manipulated pharmacologically. Current strategies for targeted protein degradation are mostly limited in their target scope to proteins with preexisting ligands. Alternate modalities such as molecular glues, as exemplified by the glutarimide class of ligands for the CUL4CRBN ligase, have been mostly discovered serendipitously. We recently reported a trans-labelling covalent glue mechanism which we named 'Template-assisted covalent modification', where an electrophile decorated small molecule binder of BRD4 was effectively delivered to a cysteine residue on an E3 ligase DCAF16 as a consequence of a BRD4-DCAF16 protein-protein interaction. Herein, we report our medicinal chemistry efforts to evaluate how various electrophilic modifications to the BRD4 binder, JQ1, affect DCAF16 trans-labeling and subsequent BRD4 degradation efficiency. We discovered a decent correlation between the ability of the electrophilic small molecule to induce ternary complex formation between BRD4 and DCAF16 with its ability to induce BRD4 degradation. Moreover, we show that a more solvent-exposed warhead presentation is optimal for DCAF16 recruitment and subsequent BRD4 degradation. Unlike the sensitivity of CUL4CRBN glue degraders to chemical modifications, the diversity of covalent attachments in this class of BRD4 glue degraders suggests a high tolerance and tunability for the BRD4-DCAF16 interaction. This offers a potential new avenue for a rational design of covalent glue degraders by introducing covalent warheads to known binders.

5.
J Med Chem ; 66(19): 13369-13383, 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37738232

ABSTRACT

Chemically induced proximity-based targeted protein degradation (TPD) has become a prominent paradigm in drug discovery. With the clinical benefit demonstrated by certain small-molecule protein degraders that target the cullin-RING E3 ubiquitin ligases (CRLs), the field has proactively strategized to tackle anticipated drug resistance by harnessing additional E3 ubiquitin ligases to enrich the arsenal of this therapeutic approach. Here, we endeavor to explore the collaborative efforts involved in unlocking a broad range of CRL4DCAF for degrader drug development. Throughout the discussion, we also highlight how both conventional and innovative approaches in drug discovery can be taken to realize this objective. Moving ahead, we expect a greater allocation of resources in TPD to pursue these high-hanging fruits.

6.
Cell Chem Biol ; 30(8): 864-878, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37494935

ABSTRACT

The cancer genomics revolution has served up a plethora of promising and challenging targets for the drug discovery community. The field of targeted protein degradation (TPD) uses small molecules to reprogram the protein homeostasis system to destroy desired target proteins. In the last decade, remarkable progress has enabled the rational development of degraders for a large number of target proteins, with over 20 molecules targeting more than 12 proteins entering clinical development. While TPD has been fully credentialed by the prior development of immunomodulatory drug (IMiD) class for the treatment of multiple myeloma, the field is poised for a "Gleevec moment" in which robust clinical efficacy of a rationally developed novel degrader against a preselected target is firmly established. Here, we endeavor to provide a high-level evaluation of exciting developments in the field and comment on steps that may realize the full potential of this new therapeutic modality.


Subject(s)
Multiple Myeloma , Proteins , Humans , Proteins/metabolism , Proteolysis , Multiple Myeloma/drug therapy , Drug Discovery , Genomics
7.
Angew Chem Int Ed Engl ; 62(18): e202302364, 2023 04 24.
Article in English | MEDLINE | ID: mdl-36898968

ABSTRACT

Phosphatidylinositol 5-phosphate 4-kinase, type II, gamma (PIP4K2C) remains a poorly understood lipid kinase with minimal enzymatic activity but potential scaffolding roles in immune modulation and autophagy-dependent catabolism. Achieving potent and selective agents for PIP4K2C while sparing other lipid and non-lipid kinases has been challenging. Here, we report the discovery of the highly potent PIP4K2C binder TMX-4102, which shows exclusive binding selectivity for PIP4K2C. Furthermore, we elaborated the PIP4K2C binder into TMX-4153, a bivalent degrader capable of rapidly and selectively degrading endogenous PIP4K2C. Collectively, our work demonstrates that PIP4K2C is a tractable and degradable target, and that TMX-4102 and TMX-4153 are useful leads to further interrogate the biological roles and therapeutic potential of PIP4K2C.


Subject(s)
Autophagy
8.
bioRxiv ; 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36824856

ABSTRACT

Small molecules that induce protein-protein interactions to exert proximity-driven pharmacology such as targeted protein degradation are a powerful class of therapeutics1-3. Molecular glues are of particular interest given their favorable size and chemical properties and represent the only clinically approved degrader drugs4-6. The discovery and development of molecular glues for novel targets, however, remains challenging. Covalent strategies could in principle facilitate molecular glue discovery by stabilizing the neo-protein interfaces. Here, we present structural and mechanistic studies that define a trans-labeling covalent molecular glue mechanism, which we term "template-assisted covalent modification". We found that a novel series of BRD4 molecular glue degraders act by recruiting the CUL4DCAF16 ligase to the second bromodomain of BRD4 (BRD4BD2). BRD4BD2, in complex with DCAF16, serves as a structural template to facilitate covalent modification of DCAF16, which stabilizes the BRD4-degrader-DCAF16 ternary complex formation and facilitates BRD4 degradation. A 2.2 Å cryo-electron microscopy structure of the ternary complex demonstrates that DCAF16 and BRD4BD2 have pre-existing structural complementarity which optimally orients the reactive moiety of the degrader for DCAF16Cys58 covalent modification. Systematic mutagenesis of both DCAF16 and BRD4BD2 revealed that the loop conformation around BRD4His437, rather than specific side chains, is critical for stable interaction with DCAF16 and BD2 selectivity. Together our work establishes "template-assisted covalent modification" as a mechanism for covalent molecular glues, which opens a new path to proximity driven pharmacology.

9.
Andrology ; 11(5): 808-815, 2023 07.
Article in English | MEDLINE | ID: mdl-36209044

ABSTRACT

BACKGROUND: A safe, effective, and reversible nonhormonal male contraceptive drug is greatly needed for male contraception as well as for circumventing the side effects of female hormonal contraceptives. Phosducin-like 2 (PDCL2) is a testis-specific phosphoprotein in mice and humans. We recently found that male PDCL2 knockout mice are sterile due to globozoospermia caused by impaired sperm head formation, indicating that PDCL2 is a potential target for male contraception. Herein, our study for the first time developed a biophysical assay for PDCL2 allowing us to screen a series of small molecules, to study structure-activity relationships, and to discover two PDCL2 binders with novel chemical structure. OBJECTIVE: To identify a PDCL2 ligand for therapeutic male contraception, we performed DNA-encoded chemical library (DECL) screening and off-DNA hit validation using a unique affinity selection mass spectrometry (ASMS) biophysical profiling strategy. MATERIALS AND METHODS: We employed the screening process of DECL, which contains billions of chemically unique DNA-barcoded compounds generated through individual sequences of reactions and different combinations of functionalized building blocks. The structures of the PDCL2 binders are proposed based on the sequencing analysis of the DNA barcode attached to each individual DECL compound. The proposed structure is synthesized through multistep reactions. To confirm and determine binding affinity between the DECL identified molecules and PDCL2, we developed an ASMS assay that incorporates liquid chromatography with tandem mass spectrometry (LC-MS/MS). RESULTS: After a screening process of PDCL2 with DECLs containing >440 billion compounds, we identified a series of hits. The selected compounds were synthesized as off-DNA small molecules, characterized by spectroscopy data, and subjected to our ASMS/LC-MS/MS binding assay. By this assay, we discovered two novel compounds, which showed good binding affinity for PDCL2 in comparison to other molecules generated in our laboratory and which were further confirmed by a thermal shift assay. DISCUSSION AND CONCLUSION AND RELEVANCE: With the ASMS/LC-MS/MS assay developed in this paper, we successfully discovered a PDCL2 ligand that warrants further development as a male contraceptive.


Subject(s)
DNA , Small Molecule Libraries , Humans , Male , Female , Animals , Mice , DNA/metabolism , Small Molecule Libraries/chemistry , Small Molecule Libraries/metabolism , Small Molecule Libraries/pharmacology , Drug Discovery , Ligands , Chromatography, Liquid , Tandem Mass Spectrometry , Semen/metabolism
10.
J Med Chem ; 65(21): 14289-14304, 2022 11 10.
Article in English | MEDLINE | ID: mdl-36265019

ABSTRACT

A range of enzymes drive human physiology, and their activities are tightly regulated through numerous signaling pathways. Depending on the context, these pathways may activate or inhibit an enzyme as a way to ensure proper execution of cellular functions. From a drug discovery and development perspective, pharmacological inhibition of enzymes has been a focus of interest, as many diseases are associated with the upregulation of enzyme function. On the other hand, however, pharmacological activation of enzymes such as kinases and phosphatases has been of increasing interest. In this review, we discuss seven case studies that highlight pharmacological activation strategy, describe the binding modes and pharmacology of the activators, and comment on how this on-demand activation strategy complements the commonly pursued inhibition strategy, thus jointly enabling bidirectional modulation of specific target of interest. Going forward, we expect activators to play important roles as chemical probes and drug leads.


Subject(s)
Gold , Signal Transduction , Humans , Enzyme Activation , Signal Transduction/physiology , Phosphoric Monoester Hydrolases
11.
Proc Natl Acad Sci U S A ; 119(22): e2122506119, 2022 05 31.
Article in English | MEDLINE | ID: mdl-35622893

ABSTRACT

BRDT, BRD2, BRD3, and BRD4 comprise the bromodomain and extraterminal (BET) subfamily which contain two similar tandem bromodomains (BD1 and BD2). Selective BD1 inhibition phenocopies effects of tandem BET BD inhibition both in cancer models and, as we and others have reported of BRDT, in the testes. To find novel BET BD1 binders, we screened >4.5 billion molecules from our DNA-encoded chemical libraries with BRDT-BD1 or BRDT-BD2 proteins in parallel. A compound series enriched only by BRDT-BD1 was resynthesized off-DNA, uncovering a potent chiral compound, CDD-724, with >2,000-fold selectivity for inhibiting BRDT-BD1 over BRDT-BD2. CDD-724 stereoisomers exhibited remarkable differences in inhibiting BRDT-BD1, with the R-enantiomer (CDD-787) being 50-fold more potent than the S-enantiomer (CDD-786). From structure­activity relationship studies, we produced CDD-956, which maintained picomolar BET BD1 binding potency and high selectivity over BET BD2 proteins and had improved stability in human liver microsomes over CDD-787. BROMOscan profiling confirmed the excellent pan-BET BD1 affinity and selectivity of CDD-787 and CDD-956 on BD1 versus BD2 and all other BD-containing proteins. A cocrystal structure of BRDT-BD1 bound with CDD-956 was determined at 1.82 Å and revealed BRDT-BD1­specific contacts with the αZ and αC helices that explain the high affinity and selectivity for BET BD1 versus BD2. CDD-787 and CDD-956 maintain cellular BD1-selectivity in NanoBRET assays and show potent antileukemic activity in acute myeloid leukemia cell lines. These BET BD1-specific and highly potent compounds are structurally unique and provide insight into the importance of chirality to achieve BET specificity.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal , Antineoplastic Agents , Contraceptive Agents, Male , Drug Discovery , Nuclear Proteins , Small Molecule Libraries , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/isolation & purification , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Antineoplastic Agents/pharmacology , Contraceptive Agents, Male/chemistry , Contraceptive Agents, Male/isolation & purification , Contraceptive Agents, Male/pharmacology , DNA/genetics , Humans , Male , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/chemistry , Protein Domains , Small Molecule Libraries/chemistry , Small Molecule Libraries/isolation & purification , Small Molecule Libraries/pharmacology , Structure-Activity Relationship
12.
J Med Chem ; 65(11): 7581-7594, 2022 06 09.
Article in English | MEDLINE | ID: mdl-35609336

ABSTRACT

Chronic myeloid leukemia (CML) is driven by the constitutive activity of the BCR-ABL1 fusion oncoprotein. Despite the great success of drugs that target the BCR-ABL1 ATP-binding site in transforming CML into a manageable disease, emerging resistance point mutations impair inhibitor binding, thereby limiting the effectiveness of these drugs. Recently, allosteric inhibitors that interact with the ABL1 myristate-binding site have been shown to awaken an endogenous regulatory mechanism and reset full-length BCR-ABL1 into an inactive assembled state. The discovery and development of these allosteric inhibitors demonstrates an in-depth understanding of the fundamental regulatory mechanisms of kinases. In this review, we illustrate the structural basis of c-ABL1's dynamic regulation of autoinhibition and activation, discuss the discovery of allosteric inhibitors and the characterization of their mechanism of action, present the therapeutic potential of dual binding to delay the development of mutation-driven acquired resistance, and suggest key lessons learned from this program.


Subject(s)
Fusion Proteins, bcr-abl , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Binding Sites , Drug Resistance, Neoplasm , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Mutation , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
13.
J Med Chem ; 65(1): 747-756, 2022 01 13.
Article in English | MEDLINE | ID: mdl-34965125

ABSTRACT

Immunomodulatory drugs are a class of drugs approved for the treatment of multiple myeloma. These compounds exert their clinical effects by inducing interactions between the CRL4CRBN E3 ubiquitin ligase and a C2H2 zinc finger degron motif, resulting in degradation of degron-containing targets. However, although many cellular proteins feature the degron motif, only a subset of those are degradable via this strategy. Here, we demonstrated that FPFT-2216, a previously reported "molecular glue" compound, degrades PDE6D, in addition to IKZF1, IKZF3, and CK1α. We used FPFT-2216 as a starting point for a focused medicinal chemistry campaign and developed TMX-4100 and TMX-4116, which exhibit greater selectivity for degrading PDE6D and CK1α, respectively. We also showed that the region in PDE6D that interacts with the FPFT-2216 derivatives is not the previously pursued prenyl-binding pocket. Moreover, we found that PDE6D depletion by FPFT-2216 does not impede the growth of KRASG12C-dependent MIA PaCa-2 cells, highlighting the challenges of drugging PDE6D-KRAS. Taken together, the approach we described here represents a general scheme to rapidly develop selective degraders by reprogramming E3 ubiquitin ligase substrate specificity.


Subject(s)
Casein Kinase Ialpha , Cyclic Nucleotide Phosphodiesterases, Type 6 , Phosphodiesterase Inhibitors , Humans , Binding Sites , Casein Kinase Ialpha/antagonists & inhibitors , Cell Line, Tumor , Cell Proliferation , Cyclic Nucleotide Phosphodiesterases, Type 6/antagonists & inhibitors , Immunotherapy , Kinetics , Phosphodiesterase Inhibitors/chemical synthesis , Phosphodiesterase Inhibitors/pharmacology
14.
Nat Rev Cancer ; 22(1): 5-24, 2022 01.
Article in English | MEDLINE | ID: mdl-34675395

ABSTRACT

Accurate control of gene expression is essential for normal development and dysregulation of transcription underpins cancer onset and progression. Similar to cell cycle regulation, RNA polymerase II-driven transcription can be considered as a unidirectional multistep cycle, with thousands of unique transcription cycles occurring in concert within each cell. Each transcription cycle comprises recruitment, initiation, pausing, elongation, termination and recycling stages that are tightly controlled by the coordinated action of transcriptional cyclin-dependent kinases and their cognate cyclins as well as the opposing activity of transcriptional phosphatases. Oncogenic dysregulation of transcription can entail defective control of gene expression, either at select loci or more globally, impacting a large proportion of the genome. The resultant dependency on the core-transcriptional machinery is believed to render 'transcriptionally addicted' cancers sensitive to perturbation of transcription. Based on these findings, small molecules targeting transcriptional cyclin-dependent kinases and associated proteins hold promise for the treatment of cancer. Here, we utilize the transcription cycles concept to explain how dysregulation of these finely tuned gene expression processes may drive tumorigenesis and how therapeutically beneficial responses may arise from global or selective transcriptional perturbation. This conceptual framework helps to explain tumour-selective transcriptional dependencies and facilitates the rational design of combination therapies.


Subject(s)
Neoplasms , Transcription, Genetic , Cyclin-Dependent Kinases/genetics , Cyclin-Dependent Kinases/metabolism , Humans , Neoplasms/genetics , Oncogenes , RNA Polymerase II/genetics , RNA Polymerase II/metabolism
15.
ACS Med Chem Lett ; 12(8): 1302-1307, 2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34413960

ABSTRACT

Ligand-directed bioconjugation strategies have been used for selective protein labeling in live cells or tissue samples in applications such as live-cell imaging. Here we hypothesized that a similar strategy could be used for targeted protein degradation. To test this possibility, we developed a series of CDK2-targeting N-acyl-N-alkylsulfonamide (NASA)-containing acylation probes. The probes featured three components: a CDK2 homing ligand, a CRL4CRBN E3 ligase recruiting ligand, and a NASA functionality. We determined that upon target binding, NASA-mediated reaction resulted in selective functionalization of Lys89 on purified or native CDK2. However, we were unable to observe CDK2 degradation, which is in contrast to the efficient degradation achieved by the use of a structurally similar reversible bivalent degrader. Our analysis suggests that the lack of degradation is due to the failure to form a productive CDK2:CRBN complex. Therefore, although this work demonstrates that NASA chemistry can be used for protein labeling, whether this strategy could enable efficient protein degradation remains an open question.

16.
Sci Adv ; 7(6)2021 02.
Article in English | MEDLINE | ID: mdl-33547076

ABSTRACT

Most intracellular proteins lack hydrophobic pockets suitable for altering their function with drug-like small molecules. Recent studies indicate that some undruggable proteins can be targeted by compounds that can degrade them. For example, thalidomide-like drugs (IMiDs) degrade the critical multiple myeloma transcription factors IKZF1 and IKZF3 by recruiting them to the cereblon E3 ubiquitin ligase. Current loss of signal ("down") assays for identifying degraders often exhibit poor signal-to-noise ratios, narrow dynamic ranges, and false positives from compounds that nonspecifically suppress transcription or translation. Here, we describe a gain of signal ("up") assay for degraders. In arrayed chemical screens, we identified novel IMiD-like IKZF1 degraders and Spautin-1, which, unlike the IMiDs, degrades IKZF1 in a cereblon-independent manner. In a pooled CRISPR-Cas9-based screen, we found that CDK2 regulates the abundance of the ASCL1 oncogenic transcription factor. This methodology should facilitate the identification of drugs that directly or indirectly degrade undruggable proteins.


Subject(s)
Oncogene Proteins , Proteolysis , Adaptor Proteins, Signal Transducing/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Benzylamines , CRISPR-Cas Systems , Humans , Ikaros Transcription Factor/metabolism , Oncogene Proteins/chemistry , Oncogene Proteins/metabolism , Proteolysis/drug effects , Quinazolines , Thalidomide/analysis , Thalidomide/pharmacology , Transcription Factors
17.
Cell ; 183(6): 1714-1731.e10, 2020 12 10.
Article in English | MEDLINE | ID: mdl-33275901

ABSTRACT

Targeted protein degradation (TPD) refers to the use of small molecules to induce ubiquitin-dependent degradation of proteins. TPD is of interest in drug development, as it can address previously inaccessible targets. However, degrader discovery and optimization remains an inefficient process due to a lack of understanding of the relative importance of the key molecular events required to induce target degradation. Here, we use chemo-proteomics to annotate the degradable kinome. Our expansive dataset provides chemical leads for ∼200 kinases and demonstrates that the current practice of starting from the highest potency binder is an ineffective method for discovering active compounds. We develop multitargeted degraders to answer fundamental questions about the ubiquitin proteasome system, uncovering that kinase degradation is p97 dependent. This work will not only fuel kinase degrader discovery, but also provides a blueprint for evaluating targeted degradation across entire gene families to accelerate understanding of TPD beyond the kinome.


Subject(s)
Protein Kinases/metabolism , Proteolysis , Proteome/metabolism , Adult , Cell Line , Databases, Protein , Female , Humans , Male , Middle Aged , Proteasome Endopeptidase Complex/metabolism , Protein Kinases/genetics , Proteomics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ubiquitin-Protein Ligases/metabolism , Young Adult
18.
ACS Med Chem Lett ; 11(6): 1269-1273, 2020 Jun 11.
Article in English | MEDLINE | ID: mdl-32551010

ABSTRACT

B-cell lymphoma 6 (BCL6) is a transcriptional repressor frequently deregulated in lymphoid malignancies. BCL6 engages with number of corepressors, and these protein-protein interactions are being explored as a strategy for drug development. Here, we report the development of an irreversible BCL6 inhibitor TMX-2164 that uses a sulfonyl fluoride to covalently react with the hydroxyl group of Tyrosine 58 located in the lateral groove. TMX-2164 exhibits significantly improved inhibitory activity compared to that of its reversible parental compound and displays sustained target engagement and antiproliferative activity in cells. TMX-2164 therefore represents an example of a tyrosine-directed covalent inhibitor of BCL6 which demonstrates advantages relative to reversible targeting.

19.
Angew Chem Int Ed Engl ; 59(33): 13865-13870, 2020 08 10.
Article in English | MEDLINE | ID: mdl-32415712

ABSTRACT

Cyclin-dependent kinase 2 (CDK2) is a potential therapeutic target for the treatment of cancer. Development of CDK2 inhibitors has been extremely challenging as its ATP-binding site shares high similarity with CDK1, a related kinase whose inhibition causes toxic effects. Here, we report the development of TMX-2172, a heterobifunctional CDK2 degrader with degradation selectivity for CDK2 and CDK5 over not only CDK1, but transcriptional CDKs (CDK7 and CDK9) and cell cycle CDKs (CDK4 and CDK6) as well. In addition, we demonstrate that antiproliferative activity in ovarian cancer cells (OVCAR8) depends on CDK2 degradation and correlates with high expression of cyclin E1 (CCNE1), which functions as a regulatory subunit of CDK2. Collectively, our work provides evidence that TMX-2172 represents a lead for further development and that CDK2 degradation is a potentially valuable therapeutic strategy in ovarian and other cancers that overexpress CCNE1.


Subject(s)
Cyclin-Dependent Kinase 2/antagonists & inhibitors , Cyclin-Dependent Kinase 5/antagonists & inhibitors , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Cell Division/drug effects , Cell Line, Tumor , Cyclin-Dependent Kinase 2/metabolism , Cyclin-Dependent Kinase 5/metabolism , Drug Screening Assays, Antitumor , Female , Humans , Ovarian Neoplasms/enzymology , Ovarian Neoplasms/pathology , Phosphorylation
20.
Cell Chem Biol ; 26(11): 1486-1500, 2019 11 21.
Article in English | MEDLINE | ID: mdl-31631011

ABSTRACT

Some of the most widely used drugs, such as aspirin and penicillin, are covalent drugs. Covalent binding can improve potency, selectivity, and duration of the effects, but the intrinsic reactivity represents a potential liability and may result in idiosyncratic toxicity. For decades, the cons were believed to outweigh the pros, and covalent targeting was deprioritized in drug discovery. Recently, several covalent inhibitors have been approved for cancer treatment, thus rebooting the field. In this review, we briefly reflect on the history of selective covalent targeting, and provide a comprehensive overview of emerging developments from a chemical biology stand-point. Our discussion will reflect on efforts to validate irreversible covalent ligands, expand the scope of targets, and discover new ligands and warheads. We conclude with a brief commentary of remaining limitations and emerging opportunities in selective covalent targeting.


Subject(s)
Cyclin-Dependent Kinases/metabolism , Ligands , Protein Kinase Inhibitors/metabolism , Cyclin-Dependent Kinases/antagonists & inhibitors , Humans , Lysine/chemistry , Protein Kinase Inhibitors/chemistry , Pyrimidines/chemistry , Pyrimidines/metabolism , Tyrosine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...