Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sports Biomech ; : 1-16, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34738493

ABSTRACT

Increased knee flexion angles are associated with reduced non-contact anterior cruciate ligament (ACL) injury risks. Ankle plantar flexion angles and internal risk factors could influence knee flexion angles, but their correlations are unknown. This study aimed to establish and validate a regression model to predict knee flexion angles using ankle plantar flexion angles, body mass index (BMI) and generalised joint laxity (GJL) at initial contact of single-leg drop landings. Thirty-two participants performed single-leg drop landings from a 30-cm-high platform. Kinematics and vertical ground reaction forces were measured using a motion capture system and force plate. A multiple regression was performed, and it was validated using a separate data set. The prediction model explained 38% (adjusted R2) of the change in knee flexion angles at initial contact (p = 0.001, large effect size). However, only the ankle plantar flexion angle (p < 0.001) was found to be a significant predictor of knee flexion angles. External validation further showed that the model explained 26% of knee flexion angles (large effect size). The inverse relationship between ankle plantar flexion and knee flexion angles suggests that foot landing strategies could be used to increase knee flexion angles, thereby reducing non-contact ACL injury risks.

2.
Knee ; 24(3): 547-554, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28336150

ABSTRACT

BACKGROUND: Non-contact anterior cruciate ligament (ACL) injuries commonly occur when athletes land in high risk positions such as knee valgus. The position of the foot at landing may influence the transmission of forces from the ankle to the knee. Using an experimental approach to manipulate foot rotation positions, this study aimed to provide new insights on how knee valgus during single-leg landing may be influenced by foot positions. METHODS: Eleven male recreational basketball players performed single-leg drop landings from a 30-cm high platform in three foot rotation positions (toe-in, toe-forward and toe-out) at initial contact. A motion capture system and a force plate were used to measure lower extremity kinematics and kinetics. Knee valgus angles at initial contact (KVA) and maximum knee valgus moments (KVM), which were known risk factors associated with ACL injury, were measured. A one-way repeated measures Analysis of Variance was conducted (α=0.05) to compare among the three foot positions. RESULTS: Foot rotation positions were found to have a significant effect on KVA (p<0.001, η2=0.66) but the difference between conditions (about 1°) was small and not clinically meaningful. There was a significant effect of foot position on KVM (p<0.001, η2=0.55), with increased moment observed in the toe-out position as compared to toe-forward (p=0.012) or toe-in positions (p=0.002). CONCLUSIONS: When landing with one leg, athletes should avoid extreme toe-out foot rotation positions to minimise undesirable knee valgus loading associated with non-contact ACL injury risks.


Subject(s)
Anterior Cruciate Ligament Injuries/prevention & control , Foot/physiology , Knee Joint/physiology , Rotation , Anterior Cruciate Ligament Injuries/physiopathology , Basketball/physiology , Biomechanical Phenomena/physiology , Humans , Male , Risk Reduction Behavior , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...