Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
PLoS One ; 9(3): e90545, 2014.
Article in English | MEDLINE | ID: mdl-24625894

ABSTRACT

Timely pond-side detection of white spot syndrome virus (WSSV) plays a critical role in the implementation of bio-security measures to help minimize economic losses caused by white spot syndrome disease, an important threat to shrimp aquaculture industry worldwide. A portable device, namely POCKIT™, became available recently to complete fluorescent probe-based insulated isothermal PCR (iiPCR), and automatic data detection and interpretation within one hour. Taking advantage of this platform, the IQ Plus™ WSSV Kit with POCKIT system was established to allow simple and easy WSSV detection for on-site users. The assay was first evaluated for its analytical sensitivity and specificity performance. The 95% limit of detection (LOD) of the assay was 17 copies of WSSV genomic DNA per reaction (95% confidence interval [CI], 13 to 24 copies per reaction). The established assay has detection sensitivity similar to that of OIE-registered IQ2000™ WSSV Detection and Protection System with serial dilutions of WSSV-positive Litopenaeus vannamei DNA. No cross-reaction signals were generated from infectious hypodermal and haematopoietic necrosis virus (IHHNV), monodon baculovirus (MBV), and hepatopancreatic parvovirus (HPV) positive samples. Accuracy analysis using 700 L. vannamei of known WSSV infection status shows that the established assayhassensitivity93.5% (95% CI: 90.61-95.56%) and specificity 97% (95% CI: 94.31-98.50%). Furthermore, no discrepancy was found between the two assays when 100 random L. vannamei samples were tested in parallel. Finally, excellent correlation was observed among test results of three batches of reagents with 64 samples analyzed in three different laboratories. Working in a portable device, IQ Plus™ WSSV Kit with POCKIT system allows reliable, sensitive and specific on-site detection of WSSV in L. vannamei.


Subject(s)
Penaeidae/virology , Polymerase Chain Reaction/instrumentation , Virus Diseases/diagnosis , Virus Diseases/veterinary , Animals , Aquaculture , DNA, Viral/isolation & purification , Electronic Data Processing , Limit of Detection , Reproducibility of Results , Sensitivity and Specificity , White spot syndrome virus 1/genetics
2.
J Food Prot ; 76(8): 1322-9, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23905786

ABSTRACT

Consumption of Salmonella-contaminated foods, such as poultry and fresh eggs, is known to be one of the main causes of salmonellosis. Conventional PCR methods, including real-time PCR for rapid detection of Salmonella, in general require skilled technicians and costly instruments. A recently developed novel convective PCR, insulated isothermal PCR (iiPCR), is carried out in polycarbonate capillary tubes. In this study, we designed TaqMan probes and PCR primers based on the yrfH gene encoding a heat shock protein for the iiPCR detection of Salmonella in chicken meat samples. The TaqMan probe was labeled with 6-carboxyfluorescein and 6-carboxytetramethylrhodamine at the 5' and 3' ends, respectively. The PCR amplicon was 133 bp. A typical run of this iiPCR assay was completed within 1 h. Specific PCR products were obtained for 148 strains representing 49 serotypes of Salmonella tested. Under the same conditions, false-positive results were not obtained for 98 non-Salmonella strains tested, including strains of Enterobacteriaceae closely related to Salmonella. For chicken meat samples, with a 5-h enrichment step Salmonella at as low as 10° CFU/g of poultry meat could be detected. Because the amplification signals from the probes are detectable at 520 nm, identification of the PCR products by gel electrophoresis is not required. Compared with conventional PCR, the iiPCR system requires less expertise and provides an economical, reliable, and rapid tool for result interpretation. Detection results can be obtained within 8 h, including the enrichment and DNA extraction steps.


Subject(s)
Chickens/microbiology , DNA, Bacterial/analysis , Food Contamination/analysis , Meat/microbiology , Polymerase Chain Reaction/methods , Salmonella/isolation & purification , Animals , DNA Primers , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , Fluoresceins , Polymerase Chain Reaction/standards , Reproducibility of Results , Rhodamines , Salmonella/genetics , Salmonella/metabolism , Salmonella Food Poisoning/prevention & control , Sensitivity and Specificity , Time Factors
3.
PLoS One ; 7(9): e45278, 2012.
Article in English | MEDLINE | ID: mdl-23049781

ABSTRACT

Insulated isothermal PCR (iiPCR), established on the basis of Ralyeigh-Bénard convection, is a rapid and low-cost platform for nucleic acid amplification. However, the method used for signal detection, namely gel electrophoresis, has limited the application of iiPCR. In this study, TaqMan probe-based iiPCR system was developed to obviate the need of post-amplification processing. This system includes an optical detection module, which was designed and integrated into the iiPCR device to detect fluorescent signals generated by the probe. TaqMan probe-iiPCR assays targeting white spot syndrome virus (WSSV) and infectious myonecrosis virus were developed for preliminary evaluation of this system. Significant elevation of fluorescent signals was detected consistently among positive iiPCR reactions in both assays, correlating with amplicon detection by gel electrophoresis analysis. After condition optimization, a threshold value of S/N (fluorescent intensity(after)/fluorescent intensity(before)) for positive reactions was defined for WSSV TaqMan probe-iiPCR on the basis of 20 blank reactions. WSSV TaqMan probe-iiPCR generated positive S/Ns from as low as 10(1) copies of standard DNA and lightly infected Litopenaeus vannamei. Compared with an OIE-certified nested PCR, WSSV TaqMan probe-iiPCR showed a sensitivity of 100% and a specificity of 96.67% in 120 WSSV-free or lightly infected shrimp samples. Generating positive signals specifically and sensitively, TaqMan probe-iiPCR system has a potential as a low-cost and rapid on-site diagnostics method.


Subject(s)
Penaeidae/virology , Polymerase Chain Reaction/methods , Totiviridae/genetics , Totiviridae/isolation & purification , White spot syndrome virus 1/genetics , White spot syndrome virus 1/isolation & purification , Animals , DNA Primers/genetics , Nucleic Acid Denaturation , Polymerase Chain Reaction/instrumentation , Sensitivity and Specificity , Temperature
4.
J Virol Methods ; 181(1): 134-7, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22326658

ABSTRACT

Aiming to develop a rapid, low-cost, and user-friendly system for the diagnosis of white spot syndrome virus (WSSV), a PCR assay performed in capillary tubes under insulated isothermal conditions (iiPCR assay) was established on the basis of Rayleigh-Benard convection. WSSV amplicons were generated reproducibly within 30 min from a target sequence-containing plasmid in an iiPCR device, in which a special polycarbonate capillary tube (R-tube™) was heated isothermally by a copper ring attached to its bottom and shielded by a thermal baffle around its upper half. Furthermore, WSSV-specific amplicons were produced from nucleic acid extracts of WSSV-infected Penaeus vannamei in the WSSV iiPCR assay, with sensitivity comparable to that of an OIE-certified commercial nested PCR kit (IQ2000™ WSSV Detection and Prevention System). Specificity of the WSSV iiPCR assay was demonstrated as no amplicons were generated from shrimp genomic DNA, and IHHNV, MBV, and HPV DNA. iiPCR has a potential as a low-cost method for sensitive, specific and rapid detection of pathogens.


Subject(s)
Penaeidae/virology , Polymerase Chain Reaction/methods , Virology/methods , White spot syndrome virus 1/isolation & purification , Animals , Capillary Tubing , Costs and Cost Analysis , Papillomaviridae , Polymerase Chain Reaction/economics , Sensitivity and Specificity , Temperature , Time Factors , Virology/economics
5.
Biotechnol J ; 7(5): 662-6, 2012 May.
Article in English | MEDLINE | ID: mdl-22241586

ABSTRACT

Rayleigh-Bénard convective PCR is a simple and effective design for amplification of DNA. Convective PCR is, however, extremely sensitive to environmental temperature fluctuations, especially when using small- diameter test tubes. Therefore, this method is inherently unstable with limited applications. Here, we present a convective PCR device that has been modified by adding thermal baffles. With this thermally baffled device the influence from fluctuations in environmental temperature were significantly reduced, even in a wind tunnel (1 m/s). The thermally baffled PCR instrument described here has the potential to be used as a low-cost, point-of-care device for PCR-based molecular diagnostics in the field.


Subject(s)
Polymerase Chain Reaction/instrumentation , Polymerase Chain Reaction/methods , Convection , DNA, Complementary/genetics , Electrophoresis, Agar Gel , Equipment Design , Plasmids/genetics , Roniviridae/genetics , Temperature , Time Factors
6.
J Virol Methods ; 173(1): 67-74, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21256868

ABSTRACT

Aiming to establish a target amplicon-specific detection system for loop-mediated isothermal amplification (LAMP), the fluorescent resonance energy transfer (FRET) probe technology was applied to develop the FRET LAMP platform. This report describes the development of the first FRET LAMP assay targeting white spot syndrome virus (WSSV) of penaeid shrimp. A successful accelerated WSSV LAMP was assembled first in a conventional oven and confirmed by gel electrophoresis and dot-blot hybridization. Subsequently, two additional FRET probes designed to target one loop region within WSSV LAMP amplicons were added to the same LAMP reaction. The reactions were carried out in a LightCycler (Roche) and significant FRET signals were detected in real time. Optimization of the reaction using plasmid DNA shortened the time for the detection of 10(2) copies of the target DNA to less than 70min. Cross reactivity was absent with WSSV-free or infectious hypodermal and hematopoietic necrosis virus-infected Penaeus vannamei samples. The performance of this system was comparable with that of a nested PCR assay from 21 WSSV-infected shrimp. Specifically detecting target amplicons and requiring no post-amplification manipulation, the novel FRET LAMP assay should allow indisputable detection of pathogens with minimized risks of amplicon contamination.


Subject(s)
Fluorescence Resonance Energy Transfer , Nucleic Acid Amplification Techniques/methods , Oligonucleotide Probes/genetics , Penaeidae/virology , Virology/methods , White spot syndrome virus 1/isolation & purification , Animals , Cross Reactions , Densovirinae/isolation & purification , Oligonucleotide Probes/chemistry , Sensitivity and Specificity
7.
Dis Aquat Organ ; 90(1): 69-76, 2010 May 18.
Article in English | MEDLINE | ID: mdl-20597432

ABSTRACT

Abalone aquaculture is a small but growing industry in Thailand and is based on both the exotic Haliotis diversicolor supertexta and the native H. asinina. Withering syndrome (WS) in abalone is caused by an infection with the Rickettsia-like organism (RLO) 'Candidatus Xenohaliotis californiensis' and has been spread to many countries globally. The present study reports the first observation of the WS-RLO agent in the small abalone, H. diversicolor supertexta in Thailand, Taiwan (ROC) and the People's Republic of China (PRC). Under light microscopy, the RLO was observed as intracytoplasmic inclusions within epithelial cells lining the post-esophagus and, to a minor extent, the intestine of H. diversicolor. Under transmission electron microscopy, inclusions were characterized as colonies of rod-shaped bacteria, 200 x 1800 nm in size, within a vesicle in the cytoplasm of the infected cell. The RLO from the small abalone bound with WS-RLO-specific in situ hybridization probes and was amplified by polymerase chain reaction (PCR), using primers designed from the 16S rDNA sequence of the original WS-RLO from California, USA. The PCR product of RLO samples from both the PRC and Thailand showed extremely high identity with the California WS-RLO (100 and 99%, respectively). These data combined with the history of abalone movements for aquaculture purposes indicate that RLOs observed in Thailand, Taiwan and the PRC are the WS-RLO that originated from California.


Subject(s)
Gastropoda/microbiology , Rickettsia/isolation & purification , Animals , Aquaculture , Base Sequence , DNA, Bacterial/genetics , Gastropoda/ultrastructure , Molecular Sequence Data , Rickettsia/genetics
8.
J Virol Methods ; 146(1-2): 317-26, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17868915

ABSTRACT

The goal of this study was to develop a field diagnosis system based on isothermal reverse transcription-loop-mediated amplification (RT-LAMP) for shrimp Taura syndrome virus (TSV), placing emphasis on specific and simple detection of the LAMP amplicons. After a single-tube RT-LAMP reaction for TSV was established, colorimetric dot-blot hybridization (DBH) was adopted to detect signals only from the target-derived amplicons. The results showed that the modified DBH offered unambiguous and sensitive detection of the TSV RT-LAMP amplicons without the UV cross-linking and denaturation steps. Together, TSV RT-LAMP-DBH assay reached the same dilution point as reverse transcription-nested polymerase chain reaction-agarose gel electrophoresis (RT-nPCR-AGE) for TSV detection. Specificity of the assay was demonstrated by the absence of DBH signal from yeast tRNA and various shrimp viruses. TSV RT-LAMP-DBH was applied to 125 Penaeus vannamei and demonstrated a very good concordance (kappa value, 0.823) with RT-nPCR-AGE assay in detection efficiency. Furthermore, a one-step guanidinium thiocyanate (GuSCN) homogenization method was established to provide RNA extraction efficiency comparable to that of the TRIzol Reagent for RT-LAMP. Requiring simply a heating apparatus, the GuSCN RNA extraction-isothermal RT-LAMP-DBH protocol has the potential for further development for diagnosis of diseases in the field.


Subject(s)
Nucleic Acid Hybridization/methods , Penaeidae/virology , RNA Viruses/isolation & purification , Reverse Transcriptase Polymerase Chain Reaction/methods , Animals , DNA, Complementary , Nucleic Acid Amplification Techniques , RNA, Viral/isolation & purification , Sensitivity and Specificity
9.
Dis Aquat Organ ; 73(2): 103-11, 2006 Dec 14.
Article in English | MEDLINE | ID: mdl-17260829

ABSTRACT

Infectious hypodermal and hematopoietic necrosis virus (IHHNV) is a single-stranded DNA virus that causes developmental and growth abnormalities in Pacific white shrimp Litopenaeus vannamei (also known as Penaeus vannamei). Nucleic acid based methods such as in situ hybridization (ISH) and PCR have been commonly used for IHHNV detection. Ramification amplification (RAM), an isothermal nucleic acid amplification approach, was used in this study to detect IHHNV in L. vannamei. RAM offers many advantages over PCR, including simple procedures and short detection time, and is labor-saving and cost-effective. RAM exponentially amplifies a circular oligonucleotide amplicon (C probe) after a target-specific ligation step through sequential primer extension and strand displacement processes. The conditions of an IHHNV RAM assay were optimized using artificial templates and targets prior to application. Using DNA of IHHNV-infected L. vannamei as targets, results revealed that RAM amplified target DNA with similar sensitivity as PCR. RAM offers competitive levels of speed, simplicity and sensitivity among various pathogen diagnostic methods.


Subject(s)
DNA, Viral/isolation & purification , Densovirinae/isolation & purification , Nucleic Acid Amplification Techniques/methods , Penaeidae/virology , Animals , DNA, Viral/chemistry , Densovirinae/genetics , Oligonucleotides/chemistry , Polymerase Chain Reaction/methods , Sensitivity and Specificity
10.
Dis Aquat Organ ; 73(1): 13-22, 2006 Nov 21.
Article in English | MEDLINE | ID: mdl-17240748

ABSTRACT

Requiring only simple heating devices, isothermal nucleic acid-based amplification (NASBA) is a potential detection platform to be developed for on-site diagnosis of aquaculture pathogens. In this report, an NASBA assay has been developed for the Taura syndrome virus (TSV), one of the most devastating RNA virus pathogens for several penaeid shrimp species. The NASBA amplicons were detected by agarose gel electrophoresis and confirmed by Northern-blotting and dot-blotting analysis, using a biotinylated TSV-specific primer. The sensitivity of the TSV NASBA coupled with dot-blotting detection was approximately 5-fold less sensitive than that of the commercially available RT-nested, PCR-based IQ2000 TSV Detection and Prevention System that was also confirmed to be more sensitive than the RT-PCR-based TSV detection protocol recommended by the OIE (Office International des Epizooties). The specificity of the TSV NASBA reaction was substantiated by the results that RNA of non-target viruses did not generate any signals. Furthermore, a simple colorimetric microtiter plate assay employing TSV-specific capture and detection primers was developed as a simple alternative approach for the detection of NASBA amplicons. Taken together, the combination of the isothermal NASBA and colorimetric solid phase-based assays should allow sensitive, straightforward, and speedy on-site detection of TSV.


Subject(s)
Aquaculture/methods , Nucleic Acid Amplification Techniques/veterinary , Penaeidae/virology , RNA Viruses/isolation & purification , Animals , Blotting, Northern/veterinary , Colorimetry/veterinary , DNA Probes/chemistry , Electrophoresis, Agar Gel/veterinary , Immunoblotting/veterinary , RNA Viruses/genetics , Reverse Transcriptase Polymerase Chain Reaction/veterinary , Sensitivity and Specificity , Taiwan , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...