Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
New Phytol ; 241(5): 2124-2142, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38185817

ABSTRACT

Heat stress transcription factors (HSFs) are core regulators of plant heat stress response. Much research has focused on class A and B HSFs, leaving those of class C relatively understudied. Here, we reported a lily (Lilium longiflorum) heat-inducible HSFC2 homology involved in thermotolerance. LlHSFC2 was located in the nucleus and cytoplasm and exhibited a repression ability by binding heat stress element. Overexpression of LlHSFC2 in Arabidopsis, tobacco (Nicotiana benthamiana), and lily, all increased the thermotolerance. Conversely, silencing of LlHSFC2 in lily reduced its thermotolerance. LlHSFC2 could interact with itself, or interact with LlHSFA1, LlHSFA2, LlHSFA3A, and LlHSFA3B of lily, AtHSFA1e and AtHSFA2 of Arabidopsis, and NbHSFA2 of tobacco. LlHSFC2 interacted with HSFAs to accelerate their transactivation ability and act as a transcriptional coactivator. Notably, compared with the separate LlHSFA3A overexpression, co-overexpression of LlHSFC2/LlHSFA3A further enhanced thermotolerance of transgenic plants. In addition, after suffering HS, the homologous interaction of LlHSFC2 was repressed, but its heterologous interaction with the heat-inducible HSFAs was promoted, enabling it to exert its co-activation effect for thermotolerance establishment and maintenance. Taken together, we identified that LlHSFC2 plays an active role in the general balance and maintenance of heat stress response by cooperating with HSFAs, and provided an important candidate for the enhanced thermotolerance breeding of crops and horticulture plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Lilium , Thermotolerance , Lilium/metabolism , Arabidopsis/metabolism , Plant Proteins/metabolism , Plant Breeding , Heat-Shock Response , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Plants, Genetically Modified/metabolism
2.
J Exp Bot ; 74(3): 945-963, 2023 02 05.
Article in English | MEDLINE | ID: mdl-36322671

ABSTRACT

The NTL (NAC with transmembrane motif 1-like) transcription factors with a conserved transmembrane motif are members of the NAC family and are important in plant development and in response to stress. However, knowledge of their regulatory pathways is scarce, especially under heat stress. Here, we cloned and identified a novel lily (Lilium longiflorum) NTL gene, LlNAC014, that increases thermotolerance. High temperature repressed LlNAC014 expression but activated its protein. LlNAC014 contained a typical transmembrane motif at its far C-terminus and was normally located on membranes, but under heat stress it entered the nucleus as a transcription factor. LlNAC014 also has a transactivation domain at its C-terminus, and its active form, LlNAC014ΔC, could function as a trans-activator in both yeast and plant cells. LlNAC014ΔC overexpression in lily and Arabidopsis increased thermotolerance, and also caused growth defects; silencing LlNAC014 in lily decreased thermotolerance. LlNAC014ΔC could constitutively activate the heat stress response by inducing the expression of heat-responsive genes, some of which were dependent on the HSF (heat stress transcription factor) pathway. Further analysis showed that LlNAC014 was a direct regulator of the DREB2-HSFA3 module, and bound to the CTT(N7)AAG element in the promoters of LlHSFA3A, LlHSFA3B, and LlDREB2B to activate their expression. Thus, LlNAC014 increased thermotolerance by sensing high temperature and translocating to the nucleus to activate the DREB2-HSFA3 module.


Subject(s)
Arabidopsis , Lilium , Thermotolerance , Transcription Factors/genetics , Transcription Factors/metabolism , Thermotolerance/genetics , Lilium/genetics , DNA-Binding Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Heat Shock Transcription Factors/genetics , Heat Shock Transcription Factors/metabolism , Arabidopsis/metabolism , Plants, Genetically Modified/genetics
3.
J Exp Bot ; 73(1): 197-212, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34453430

ABSTRACT

Embryo abortion often occurs during distant hybridization events. Apetala 2/ethylene-responsive factor (AP2/ERF) proteins are key transcription factor (TF) regulators of plant development and stress resistance, but their roles in hybrid embryo development are poorly understood. In this study, we isolated a novel AP2/ERF TF, CmERF12, from chrysanthemum and show that it adversely affects embryo development during distant hybridization. Transcriptome and real-time quantitative PCR demonstrate that CmERF12 is expressed at significantly higher levels in aborted ovaries compared with normal ones. CmERF12 localizes to the cell nucleus and contains a conserved EAR motif that mediates its transcription repressor function in yeast and plant cells. We generated artificial microRNA (amiR) CmERF12 transgenic lines of Chrysanthemum morifolium var. 'Yuhualuoying' and conducted distant hybridization with the wild-type tetraploid, Chrysanthemum nankingense, and found that CmERF12-knock down significantly promoted embryo development and increased the seed-setting rates during hybridization. The expression of various genes related to embryo development was up-regulated in developing ovaries from the cross between female amiR-CmERF12 C. morifolium var. 'Yuhualuoying'× male C. nankingense. Furthermore, CmERF12 directly interacted with CmSUF4, which is known to affect flower development and embryogenesis, and significantly reduced its ability to activate its target gene CmEC1 (EGG CELL1). Our study provides a novel method to overcome barriers to distant hybridization in plants and reveals the mechanism by which CmERF12 negatively affects chrysanthemum embryo development.


Subject(s)
Chrysanthemum , Chrysanthemum/genetics , Chrysanthemum/metabolism , Embryonic Development , Gene Expression Regulation, Plant , Hybridization, Genetic , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/metabolism
4.
Hortic Res ; 8(1): 191, 2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34376645

ABSTRACT

Distant hybridization is widely used to develop crop cultivars, whereas the hybridization process of embryo abortion often severely reduces the sought-after breeding effect. The LEAFY COTYLEDON1 (LEC1) gene has been extensively investigated as a central regulator of seed development, but it is far less studied in crop hybridization breeding. Here we investigated the function and regulation mechanism of CmLEC1 from Chrysanthemum morifolium during its seed development in chrysanthemum hybridization. CmLEC1 encodes a nucleic protein and is specifically expressed in embryos. CmLEC1's overexpression significantly promoted the seed-setting rate of the cross, while the rate was significantly decreased in the amiR-CmLEC1 transgenic chrysanthemum. The RNA-Seq analysis of the developing hybrid embryos revealed that regulatory genes involved in seed development, namely, CmLEA (late embryogenesis abundant protein), CmOLE (oleosin), CmSSP (seed storage protein), and CmEM (embryonic protein), were upregulated in the OE (overexpressing) lines but downregulated in the amiR lines vs. wild-type lines. Future analysis demonstrated that CmLEC1 directly activated CmLEA expression and interacted with CmC3H, and this CmLEC1-CmC3H interaction could enhance the transactivation ability of CmLEC1 for the expression of CmLEA. Further, CmLEC1 was able to induce several other key genes related to embryo development. Taken together, our results show that CmLEC1 plays a positive role in the hybrid embryo development of chrysanthemum plants, which might involve activating CmLEA's expression and interacting with CmC3H. This may be a new pathway in the LEC1 regulatory network to promote seed development, one perhaps leading to a novel strategy to not only overcome embryo abortion during crop breeding but also increase the seed yield.

5.
Plant Cell Physiol ; 62(11): 1687-1701, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34370862

ABSTRACT

Male sterility, as a common reproductive characteristic in plants, plays an important role in breeding, in which pollen abortion is a key factor leading to male sterility. Here, based on a low expression level gene CmACOS5 in transcriptome of pollen abortive chrysanthemum, a new transcription factor CmLBD2 of the Lateral Organ Boundaries Domain family, which could bind the promoter of CmACOS5 by yeast one-hybrid library was screened. This study revealed the origin and expression pattern of CmLBD2 in chrysanthemum and verified the functions of two genes in pollen development by transgenic means. Inhibiting the expression of CmACOS5 or CmLBD2 can lead to a large reduction in pollen and even abortion in chrysanthemum. Using yeast one-/two-hybrid, electrophoretic mobility shift assays, and luciferase reporter assays, it was verified that CmLBD2 directly binds to the promoter of CmACOS5. These results suggest that LBD2 is a novel, key transcription factor regulating pollen development. This result will provide a new research background for enriching the function of LBD family proteins and also lay a new foundation for the breeding of male sterile lines and the mechanism of pollen development.


Subject(s)
Chrysanthemum/growth & development , Chrysanthemum/genetics , Coenzyme A Ligases/genetics , Plant Proteins/genetics , Pollen/growth & development , Transcription Factors/genetics , Chrysanthemum/enzymology , Chrysanthemum/metabolism , Coenzyme A Ligases/metabolism , Plant Proteins/metabolism , Pollen/genetics , Transcription Factors/metabolism
6.
Hortic Res ; 8(1): 36, 2021 Feb 04.
Article in English | MEDLINE | ID: mdl-33542226

ABSTRACT

WRKY transcription factors (TFs) are of great importance in plant responses to different abiotic stresses. However, research on their roles in the regulation of thermotolerance remains limited. Here, we investigated the function of LlWRKY39 in the thermotolerance of lily (Lilium longiflorum 'white heaven'). According to multiple alignment analyses, LlWRKY39 is in the WRKY IId subclass and contains a potential calmodulin (CaM)-binding domain. Further analysis has shown that LlCaM3 interacts with LlWRKY39 by binding to its CaM-binding domain, and this interaction depends on Ca2+. LlWRKY39 was induced by heat stress (HS), and the LlWRKY39-GFP fusion protein was detected in the nucleus. The thermotolerance of lily and Arabidopsis was increased with the ectopic overexpression of LlWRKY39. The expression of heat-related genes AtHSFA1, AtHSFA2, AtMBF1c, AtGolS1, AtDREB2A, AtWRKY39, and AtHSP101 was significantly elevated in transgenic Arabidopsis lines, which might have promoted an increase in thermotolerance. Then, the promoter of LlMBF1c was isolated from lily, and LlWRKY39 was found to bind to the conserved W-box element in its promoter to activate its activity, suggesting that LlWRKY39 is an upstream regulator of LlMBF1c. In addition, a dual-luciferase reporter assay showed that via protein interaction, LlCaM3 negatively affected LlWRKY39 in the transcriptional activation of LlMBF1c, which might be an important feedback regulation pathway to balance the LlWRKY39-mediated heat stress response (HSR). Collectively, these results imply that LlWRKY39 might participate in the HSR as an important regulator through Ca2+-CaM and multiprotein bridging factor pathways.

7.
Planta ; 242(5): 1167-74, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26105653

ABSTRACT

MAIN CONCLUSION: Chinese medicinal herbs have a similar appearance and are easily confused, complicating identification via traditional methods. This study provided a scientific approach, based on DNA barcoding, to accurately and rapidly identify Anoectochilus roxburghii and its adulterants. This technology complements traditional methods of identification of medicinal herbs. A comparison of the DNA barcodes matK, psbA-trnH and ITS2 was performed to verify that the ITS2 sequence is an effective marker for rapidly and accurately identifying A. roxburghii and its closely related species. Genomic DNA extracted from A. roxburghii and its adulterants were used as templates and the ITS2 sequence was amplified using PCR amplification and sequencing. Species identification was conducted using BLAST1 and neighbor-joining trees. The 12 samples were successfully classified into four species based on the ITS2 sequence. The ITS2 sequence length of A. roxburghii was 253 bp. The average intra-specific genetic distance of A. roxburghii was 0.0021, markedly lower than the inter-specific genetic distance between A. roxburghii and its adulterants (0.0380). Our findings illustrate that ITS2 sequence can accurately and efficiently distinguish A. roxburghii and its adulterants. In addition, the results provided reference for molecular identification of other Chinese herbal medicine.


Subject(s)
DNA, Plant/genetics , DNA, Ribosomal Spacer/genetics , Orchidaceae/genetics , DNA Barcoding, Taxonomic , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...