Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 15: 1355949, 2024.
Article in English | MEDLINE | ID: mdl-38420128

ABSTRACT

Introduction: Since December 2019, the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing coronavirus disease 2019 (COVID-19) has presented considerable public health challenges. Multiple vaccines have been used to induce neutralizing antibodies (nAbs) and memory B-cell responses against the viral spike (S) glycoprotein, and many essential epitopes have been defined. Previous reports have identified severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike-reactive naïve B cells and preexisting memory B cells in unexposed individuals. However, the role of these spike-reactive B cells in vaccine-induced immunity remains unknown. Methods: To elucidate the characteristics of preexisting SARS-CoV-2 S-reactive B cells as well as their maturation after antigen encounter, we assessed the relationship of spike-reactive B cells before and after vaccination in unexposed human individuals. We further characterized the sequence identity, targeting domain, broad-spectrum binding activity and neutralizing activity of these SARS-CoV-2 S-reactive B cells by isolating monoclonal antibodies (mAbs) from these B cells. Results: The frequencies of both spike-reactive naïve B cells and preexisting memory B cells before vaccination correlated with the frequencies of spike-reactive memory B cells after vaccination. Isolated mAbs from spike-reactive naïve B cells before vaccination had fewer somatic hypermutations (SHMs) than mAbs isolated from spike-reactive memory B cells before and after vaccination, but bound SARS-CoV-2 spike in vitro. Intriguingly, these germline-like mAbs possessed broad binding profiles for SARS-CoV-2 and its variants, although with low or no neutralizing capacity. According to tracking of the evolution of IGHV4-4/IGKV3-20 lineage antibodies from a single donor, the lineage underwent SHMs and developed increased binding activity after vaccination. Discussion: Our findings suggest that spike-reactive naïve B cells can be expanded and matured by vaccination and cocontribute to vaccine-elicited antibody responses with preexisting memory B cells. Selectively and precisely targeting spike-reactive B cells by rational antigen design may provide a novel strategy for next-generation SARS-CoV-2 vaccine development.


Subject(s)
COVID-19 , Memory B Cells , Humans , SARS-CoV-2 , Antibody Formation , COVID-19 Vaccines , COVID-19/prevention & control , Vaccination , Antibodies, Monoclonal
2.
J Infect Dis ; 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38324762

ABSTRACT

Regulatory T (TREG) cells are involved in the antiviral immune response in patients with COVID-19; however, whether TREG cells are involved in the neutralizing antibody (nAb) response remains unclear. Here, we found that individuals who recovered from mild but not severe COVID-19 had significantly greater frequencies of TREG cells and lower frequencies of CXCR3+ circulating TFH (cTFH) cells than healthy controls. Furthermore, TREG and CXCR3+ cTFH cells were negatively and positively correlated with the nAb responses, respectively, and TREG cells was inversely associated with CXCR3+ cTFH cells in individuals who recovered from mild COVID-19 but not in those with severe disease. Mechanistically, TREG cells inhibited memory B-cell differentiation and antibody production by limiting the activation and proliferation of cTFH cells, especially CXCR3+ cTFH cells, and functional molecule expression. This study provides novel insight showing that mild COVID-19 elicits a concerted nAb responses which are shaped by both TREG and TFH cells.

3.
Signal Transduct Target Ther ; 8(1): 393, 2023 10 06.
Article in English | MEDLINE | ID: mdl-37802996

ABSTRACT

Long-term humoral immunity to SARS-CoV-2 is essential for preventing reinfection. The production of neutralizing antibody (nAb) and B cell differentiation are tightly regulated by T follicular help (TFH) cells. However, the longevity and functional role of TFH cell subsets in COVID-19 convalescents and vaccine recipients remain poorly defined. Here, we show that SARS-CoV-2 infection and inactivated vaccine elicited both spike-specific CXCR3+ TFH cell and CXCR3- TFH cell responses, which showed distinct response patterns. Spike-specific CXCR3+ TFH cells exhibit a dominant and more durable response than CXCR3- TFH cells that positively correlated with antibody responses. A third booster dose preferentially expands the spike-specific CXCR3+ TFH cell subset induced by two doses of inactivated vaccine, contributing to antibody maturation and potency. Functionally, spike-specific CXCR3+ TFH cells have a greater ability to induce spike-specific antibody secreting cells (ASCs) differentiation compared to spike-specific CXCR3- TFH cells. In conclusion, the persistent and functional role of spike-specific CXCR3+ TFH cells following SARS-CoV-2 infection and vaccination may play an important role in antibody maintenance and recall response, thereby conferring long-term protection. The findings from this study will inform the development of SARS-CoV-2 vaccines aiming to induce long-term protective immune memory.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19 Vaccines , Antibodies, Neutralizing , Vaccines, Inactivated
5.
Front Immunol ; 13: 1056272, 2022.
Article in English | MEDLINE | ID: mdl-36618428

ABSTRACT

Introduction: The Middle East respiratory syndrome coronavirus (MERS-CoV) and the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are two highly contagious coronaviruses causing MERS and COVID-19, respectively, without an effective antiviral drug and a long-lasting vaccine. Approaches for diagnosis, therapeutics, prevention, etc., particularly for SARS-CoV-2 that is continually spreading and evolving, are urgently needed. Our previous study discovered that >60% of sera from convalescent COVID-19 individuals, but <8% from general population, showed binding activity against the MERS-CoV spike protein, indicating that SARS-CoV-2 infection boosted antibodies cross-reactive with MERS-CoV. Methods: To generate antibodies specific to both SARS-CoV-2 and MERS-CoV, here we screened 60 COVID-19 convalescent sera against MERS-CoV spike extracellular domain and S1 and S2 subunits. We constructed and characterized monoclonal antibodies (mAbs) from COVID-19 convalescent memory B cells and examined their binding and neutralizing activities against human coronaviruses. Results and Discussion: Of 60 convalescent serum samples, 34 showed binding activity against MERS-CoV S2, with endpoint titers positively correlated with the titers to SARS-CoV-2 S2. By sorting single memory B cells from COVID-19 convalescents, we constructed 38 mAbs and found that 11 mAbs showed binding activity with MERS-CoV S2, of which 9 mAbs showed potent cross-reactivity with all or a proportion of spike proteins of alphacoronaviruses (229E and NL63) and betacoronaviruses (SARS-CoV-1, SARS-CoV-2, OC43, and HKU1). Moreover, 5 mAbs also showed weak neutralization efficiency against MERS-CoV spike pseudovirus. Epitope analysis revealed that 3 and 8 mAbs bound to linear and conformational epitopes in MERS-CoV S2, respectively. In summary, we have constructed a panel of antibodies with broad-spectrum reactivity against all seven human coronaviruses, thus facilitating the development of diagnosis methods and vaccine design for multiple coronaviruses.


Subject(s)
COVID-19 , Coronaviridae , Middle East Respiratory Syndrome Coronavirus , Humans , SARS-CoV-2 , Antibodies, Monoclonal , Memory B Cells , Antibodies, Viral , COVID-19 Serotherapy , Epitopes
SELECTION OF CITATIONS
SEARCH DETAIL
...