Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 14(21)2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36365488

ABSTRACT

Lithium metal batteries are emerging as the next generation of high-density electrochemical energy storage systems because of the ultra-high specific capacity and ultra-low electrochemical potential of the Li metal anode. However, the uneven Li deposition on commercial Cu current collectors result in low Coulombic efficiencies (CEs) and poor cycle life. In this research, we proposed the modification of ZnFx(OH)y on Cu foils to expand the lifespan. As-generated ZnLi alloy and LiF could promote uniform Li nucleation and deposition, thus resulting in an improved Li plating/stripping CE and extended cycle life. The Li-S battery with sulfurized polyacrylonitrile cathode and Li-ZnFx(OH)y@Cu anode (N/P ratio of 1.5:1) maintains 95% capacity after 60 cycles, proving the feasibility of ZnFx(OH)y@Cu for practical applications.

2.
Polymers (Basel) ; 14(17)2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36080527

ABSTRACT

Lithium metal batteries (LMBs) are promising next-generation battery technologies with high energy densities. However, lithium dendrite growth during charge/discharge results in severe safety issues and poor cycling performance, which hinders their wide applications. The rational design and application of functional polymer materials in LMBs are of crucial importance to boost their electrochemical performances, especially the cycling stability. In this review, recent advances of advanced polymer materials are examined for boosting the stability and cycle life of LMBs as different components including artificial solid electrolyte interface (SEI) and functional interlayers between the separator and lithium metal anode. Thereafter, the research progress in the design of advanced polymer electrolytes will be analyzed for LMBs. At last, the major challenges and key perspectives will be discussed for the future development of functional polymers in LMBs.

3.
Polymers (Basel) ; 14(16)2022 Aug 15.
Article in English | MEDLINE | ID: mdl-36015568

ABSTRACT

Lithium-metal batteries have attracted extensive research attention because of their high energy densities. Developing appropriate electrolytes compatible with lithium-metal anodes is of great significance to facilitate their practical application. Currently used electrolytes still face challenges of high production costs and unsatisfactory Coulombic efficiencies of lithium plating/stripping. In this research, we have developed a diluted electrolyte which is compatible with both lithium-metal anode and sulfurized polyacrylonitrile cathode. It presents a very high Li plating/stripping Coulombic efficiency of 99.3% over prolonged cycling, and the as-assembled anode-free Li-S battery maintains 71.5% of the initial specific capacity after 200 cycles at 0.1 A g-1. This work could shed light on designing a low-cost and high-performance liquid electrolyte for next-generation high-energy batteries.

4.
Front Chem ; 10: 857036, 2022.
Article in English | MEDLINE | ID: mdl-35355786

ABSTRACT

In the critical situation of energy shortage and environmental problems, Si has been regarded as one of the most potential anode materials for next-generation lithium-ion batteries as a result of the relatively low delithiation potential and the eminent specific capacity. However, a Si anode is subjected to the huge volume expansion-contraction in the charging-discharging process, which can touch off pulverization of the bulk particles and worsens the cycle life. Herein, to reduce the volume change and improve the electrochemical performance, a novel Si@SiOx/C anode with a core-shell structure is designed by spray and pyrolysis methods. The SiOx/C shell not only ensures the structure stability and proves the high electrical conductivity but also prevents the penetration of electrolytes, so as to avoid the repetitive decomposition of electrolytes on the surface of Si particle. As expected, Si@SiOx/C anode maintains the excellent discharge capacity of 1,333 mAh g-1 after 100 cycles at a current density of 100 mA g-1. Even if the current density reaches up to 2,000 mA g-1, the capacity can still be maintained at 1,173 mAh g-1. This work paves an effective way to develop Si-based anodes for high-energy density lithium-ion batteries.

SELECTION OF CITATIONS
SEARCH DETAIL
...