Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 14(9): 2455-2460, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36873837

ABSTRACT

Transition metals can deliver high lithium storage capacity, but the reason behind this remains elusive. Herein, the origin of this anomalous phenomenon is uncovered by in situ magnetometry taking metallic Co as a model system. It is revealed that the lithium storage in metallic Co undergoes a two-stage mechanism involving a spin-polarized electron injection to the 3d orbital of Co and subsequent electron transfer to the surrounding solid electrolyte interphase (SEI) at lower potentials. These effects create space charge zones for fast lithium storage on the electrode interface and boundaries with capacitive behavior. Therefore, the transition metal anode can enhance common intercalation or pseudocapacitive electrodes at high capacity while showing superior stability to existing conversion-type or alloying anodes. These findings pave the way for not only understanding the unusual lithium storage behavior of transition metals but also for engineering high-performance anodes with overall enhancement in capacity and long-term durability.

2.
ACS Nano ; 14(5): 6222-6231, 2020 May 26.
Article in English | MEDLINE | ID: mdl-32352746

ABSTRACT

Despite their promising potential, the real performance of lithium-sulfur batteries is still heavily impeded by the notorious shuttle behavior and sluggish conversion of polysulfides. Complex structures with multiple components have been widely employed to address these issues by virtue of their strong polarity and abundant surface catalytic sites. Nevertheless, the tedious constructing procedures and high cost of these materials make the exploration of alternative high-performance sulfur hosts increasingly important. Herein, we report an intrinsic defect-rich hierarchically porous carbon architecture with strong affinity and high conversion activity toward polysulfides even at high sulfur loading. Such an architecture can be prepared using a widely available nitrogen-containing precursor through a simple yet effective in situ templating strategy and subsequent nitrogen removal procedure. The hierarchical structure secures a high sulfur loading, while the intrinsic defects strongly anchor the active species and boost their chemical conversion because of the strong polarity and accelerated electron transfer at the defective sites. As a result, the lithium-sulfur batteries with this carbon material as the sulfur host deliver a high specific capacity of 1182 mAh g-1 at 0.5 C, excellent cycling stability with a capacity retention of 70% after 500 cycles, and outstanding rate capability, one of the best results among pure carbon hosts. The strategy suggested here may rekindle interest in exploring the potential of pure carbon materials for lithium-sulfur batteries as well as other energy storage devices.

3.
Nanoscale Res Lett ; 13(1): 60, 2018 Feb 23.
Article in English | MEDLINE | ID: mdl-29473118

ABSTRACT

Nanocrystalline Fe2O3 thin films are deposited directly on the conduct substrates by pulsed laser deposition as anode materials for lithium-ion batteries. We demonstrate the well-designed Fe2O3 film electrodes are capable of excellent high-rate performance (510 mAh g- 1 at high current density of 15,000 mA g- 1) and superior cycling stability (905 mAh g- 1 at 100 mA g- 1 after 200 cycles), which are among the best reported state-of-the-art Fe2O3 anode materials. The outstanding lithium storage performances of the as-synthesized nanocrystalline Fe2O3 film are attributed to the advanced nanostructured architecture, which not only provides fast kinetics by the shortened lithium-ion diffusion lengths but also prolongs cycling life by preventing nanosized Fe2O3 particle agglomeration. The electrochemical performance results suggest that this novel Fe2O3 thin film is a promising anode material for all-solid-state thin film batteries.

SELECTION OF CITATIONS
SEARCH DETAIL
...