Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Breast Cancer Res ; 26(1): 77, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745321

ABSTRACT

BACKGROUND: Early prediction of pathological complete response (pCR) is important for deciding appropriate treatment strategies for patients. In this study, we aimed to quantify the dynamic characteristics of dynamic contrast-enhanced magnetic resonance images (DCE-MRI) and investigate its value to improve pCR prediction as well as its association with tumor heterogeneity in breast cancer patients. METHODS: The DCE-MRI, clinicopathologic record, and full transcriptomic data of 785 breast cancer patients receiving neoadjuvant chemotherapy were retrospectively included from a public dataset. Dynamic features of DCE-MRI were computed from extracted phase-varying radiomic feature series using 22 CAnonical Time-sereis CHaracteristics. Dynamic model and radiomic model were developed by logistic regression using dynamic features and traditional radiomic features respectively. Various combined models with clinical factors were also developed to find the optimal combination and the significance of each components was evaluated. All the models were evaluated in independent test set in terms of area under receiver operating characteristic curve (AUC). To explore the potential underlying biological mechanisms, radiogenomic analysis was implemented on patient subgroups stratified by dynamic model to identify differentially expressed genes (DEGs) and enriched pathways. RESULTS: A 10-feature dynamic model and a 4-feature radiomic model were developed (AUC = 0.688, 95%CI: 0.635-0.741 and AUC = 0.650, 95%CI: 0.595-0.705) and tested (AUC = 0.686, 95%CI: 0.594-0.778 and AUC = 0.626, 95%CI: 0.529-0.722), with the dynamic model showing slightly higher AUC (train p = 0.181, test p = 0.222). The combined model of clinical, radiomic, and dynamic achieved the highest AUC in pCR prediction (train: 0.769, 95%CI: 0.722-0.816 and test: 0.762, 95%CI: 0.679-0.845). Compared with clinical-radiomic combined model (train AUC = 0.716, 95%CI: 0.665-0.767 and test AUC = 0.695, 95%CI: 0.656-0.714), adding the dynamic component brought significant improvement in model performance (train p < 0.001 and test p = 0.005). Radiogenomic analysis identified 297 DEGs, including CXCL9, CCL18, and HLA-DPB1 which are known to be associated with breast cancer prognosis or angiogenesis. Gene set enrichment analysis further revealed enrichment of gene ontology terms and pathways related to immune system. CONCLUSION: Dynamic characteristics of DCE-MRI were quantified and used to develop dynamic model for improving pCR prediction in breast cancer patients. The dynamic model was associated with tumor heterogeniety in prognostic-related gene expression and immune-related pathways.


Subject(s)
Breast Neoplasms , Contrast Media , Magnetic Resonance Imaging , Humans , Female , Breast Neoplasms/genetics , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Magnetic Resonance Imaging/methods , Middle Aged , Adult , Retrospective Studies , Neoadjuvant Therapy , Prognosis , ROC Curve , Transcriptome , Aged , Treatment Outcome
2.
Osteoarthr Cartil Open ; 6(2): 100448, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38440779

ABSTRACT

Objective: Knee replacement (KR) is the last-resort treatment for knee osteoarthritis. Although radiographic evidence of tibiofemoral joint has been widely adopted for prognostication, patellofemoral joint has gained little attention and may hold additional value for further improvements. We aimed to quantitatively analyse patellofemoral joint through radiomics analysis of lateral view radiographs for improved KR risk prediction. Design: From the Multicenter Osteoarthritis Study dataset, we retrospectively retrieved the initial-visit lateral left knee radiographs of 2943 patients aged 50 to 79. They were split into training and test cohorts at a 2:1 ratio. A comprehensive set of radiomic features were extracted within the best-performing subregion of patellofemoral joint and combined into a radiomics score (RadScore). A KR risk score, derived from Kellgren-Lawrence grade (KLG) of tibiofemoral joint and RadScore of patellofemoral joint, was developed by multivariate Cox regression and assessed using time-dependent area under receiver operating characteristic curve (AUC). Results: While patellofemoral osteoarthritis (PFOA) was insignificant during multivariate analysis, RadScore was identified as an independent risk factor (multivariate Cox p-value < 0.001) for KR. The subgroup analysis revealed that RadScore was particularly effective in predicting rapid progressor (KR occurrence before 30 months) among early- (KLG < 2) and mid-stage (KLG â€‹= â€‹2) patients. Combining two joints radiographic information, the AUC reached 0.89/0.87 for predicting 60-month KR occurrence. Conclusions: The RadScore of the patellofemoral joint on lateral radiographs emerges as an independent prognostic factor for improving KR prognosis prediction. The KR risk score could be instrumental in managing progressive knee osteoarthritis interventions.

3.
Quant Imaging Med Surg ; 14(2): 1636-1651, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38415134

ABSTRACT

Background: Pulmonary segments are valuable because they can provide more precise localization and intricate details of lung cancer than lung lobes. With advances in precision therapy, there is an increasing demand for the identification and visualization of pulmonary segments in computed tomography (CT) images to aid in the precise treatment of lung cancer. This study aimed to integrate multiple deep-learning models to accurately segment pulmonary segments in CT images using a bronchial tree (BT)-based approach. Methods: The proposed segmentation method for pulmonary segments using the BT-based approach comprised the following five essential steps: (I) segmentation of the lung using a U-Net (R231) (public access) model; (II) segmentation of the lobes using a V-Net (self-developed) model; (III) segmentation of the airway using a combination of a differential geometric approach method and a BronchiNet (public access) model; (IV) labeling of the BT branches based on anatomical position; and (V) segmentation of the pulmonary segments based on the distance of each voxel to the labeled BT branches. This five-step process was applied to 14 high-resolution breath-hold CT images and compared against manual segmentations for evaluation. Results: For the lung segmentation, the lung mask had a mean dice similarity coefficient (DSC) of 0.98±0.03. For the lobe segmentation, the V-Net model had a mean DSC of 0.94±0.06. For the airway segmentation, the average total length of the segmented airway trees per image scan was 1,902.8±502.1 mm, and the average number of the maximum airway tree generations was 8.5±1.3. For the segmentation of the pulmonary segments, the proposed method had a DSC of 0.73±0.11 and a mean surface distance of 6.1±2.9 mm. Conclusions: This study demonstrated the feasibility of combining multiple deep-learning models for the auxiliary segmentation of pulmonary segments on CT images using a BT-based approach. The results highlighted the potential of the BT-based method for the semi-automatic segmentation of the pulmonary segment.

4.
Radiol Imaging Cancer ; 6(1): e230033, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38180338

ABSTRACT

Purpose To describe the design, conduct, and results of the Breast Multiparametric MRI for prediction of neoadjuvant chemotherapy Response (BMMR2) challenge. Materials and Methods The BMMR2 computational challenge opened on May 28, 2021, and closed on December 21, 2021. The goal of the challenge was to identify image-based markers derived from multiparametric breast MRI, including diffusion-weighted imaging (DWI) and dynamic contrast-enhanced (DCE) MRI, along with clinical data for predicting pathologic complete response (pCR) following neoadjuvant treatment. Data included 573 breast MRI studies from 191 women (mean age [±SD], 48.9 years ± 10.56) in the I-SPY 2/American College of Radiology Imaging Network (ACRIN) 6698 trial (ClinicalTrials.gov: NCT01042379). The challenge cohort was split into training (60%) and test (40%) sets, with teams blinded to test set pCR outcomes. Prediction performance was evaluated by area under the receiver operating characteristic curve (AUC) and compared with the benchmark established from the ACRIN 6698 primary analysis. Results Eight teams submitted final predictions. Entries from three teams had point estimators of AUC that were higher than the benchmark performance (AUC, 0.782 [95% CI: 0.670, 0.893], with AUCs of 0.803 [95% CI: 0.702, 0.904], 0.838 [95% CI: 0.748, 0.928], and 0.840 [95% CI: 0.748, 0.932]). A variety of approaches were used, ranging from extraction of individual features to deep learning and artificial intelligence methods, incorporating DCE and DWI alone or in combination. Conclusion The BMMR2 challenge identified several models with high predictive performance, which may further expand the value of multiparametric breast MRI as an early marker of treatment response. Clinical trial registration no. NCT01042379 Keywords: MRI, Breast, Tumor Response Supplemental material is available for this article. © RSNA, 2024.


Subject(s)
Breast Neoplasms , Multiparametric Magnetic Resonance Imaging , Female , Humans , Middle Aged , Artificial Intelligence , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/drug therapy , Magnetic Resonance Imaging , Neoadjuvant Therapy , Pathologic Complete Response , Adult
5.
J Cancer Res Clin Oncol ; 150(2): 39, 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38280037

ABSTRACT

OBJECTIVE: This study aimed to develop a prediction model for esophageal fistula (EF) in esophageal cancer (EC) patients treated with intensity-modulated radiation therapy (IMRT), by integrating multi-omics features from multiple volumes of interest (VOIs). METHODS: We retrospectively analyzed pretreatment planning computed tomographic (CT) images, three-dimensional dose distributions, and clinical factors of 287 EC patients. Nine groups of features from different combination of omics [Radiomics (R), Dosiomics (D), and RD (the combination of R and D)], and VOIs [esophagus (ESO), gross tumor volume (GTV), and EG (the combination of ESO and GTV)] were extracted and separately selected by unsupervised (analysis of variance (ANOVA) and Pearson correlation test) and supervised (Student T test) approaches. The final model performance was evaluated using five metrics: average area under the receiver-operator-characteristics curve (AUC), accuracy, precision, recall, and F1 score. RESULTS: For multi-omics using RD features, the model performance in EG model shows: AUC, 0.817 ± 0.031; 95% CI 0.805, 0.825; p < 0.001, which is better than single VOI (ESO or GTV). CONCLUSION: Integrating multi-omics features from multi-VOIs enables better prediction of EF in EC patients treated with IMRT. The incorporation of dosiomics features can enhance the model performance of the prediction.


Subject(s)
Esophageal Fistula , Esophageal Neoplasms , Radiotherapy, Intensity-Modulated , Humans , Retrospective Studies , Multiomics , Radiotherapy, Intensity-Modulated/adverse effects , Esophageal Neoplasms/pathology , Esophageal Fistula/etiology
6.
Sci Rep ; 13(1): 18263, 2023 10 25.
Article in English | MEDLINE | ID: mdl-37880324

ABSTRACT

Image perturbation is a promising technique to assess radiomic feature repeatability, but whether it can achieve the same effect as test-retest imaging on model reliability is unknown. This study aimed to compare radiomic model reliability based on repeatable features determined by the two methods using four different classifiers. A 191-patient public breast cancer dataset with 71 test-retest scans was used with pre-determined 117 training and 74 testing samples. We collected apparent diffusion coefficient images and manual tumor segmentations for radiomic feature extraction. Random translations, rotations, and contour randomizations were performed on the training images, and intra-class correlation coefficient (ICC) was used to filter high repeatable features. We evaluated model reliability in both internal generalizability and robustness, which were quantified by training and testing AUC and prediction ICC. Higher testing performance was found at higher feature ICC thresholds, but it dropped significantly at ICC = 0.95 for the test-retest model. Similar optimal reliability can be achieved with testing AUC = 0.7-0.8 and prediction ICC > 0.9 at the ICC threshold of 0.9. It is recommended to include feature repeatability analysis using image perturbation in any radiomic study when test-retest is not feasible, but care should be taken when deciding the optimal feature repeatability criteria.


Subject(s)
Breast Neoplasms , Image Processing, Computer-Assisted , Humans , Female , Image Processing, Computer-Assisted/methods , Reproducibility of Results , Diffusion Magnetic Resonance Imaging , Breast Neoplasms/diagnostic imaging
7.
Breast Cancer Res ; 25(1): 77, 2023 06 28.
Article in English | MEDLINE | ID: mdl-37381020

ABSTRACT

BACKGROUND: The immunohistochemical test (IHC) of HER2 and HR can provide prognostic information and treatment guidance for invasive breast cancer patients. We aimed to develop noninvasive image signatures ISHER2 and ISHR of HER2 and HR, respectively. We independently evaluate their repeatability, reproducibility, and association with pathological complete response (pCR) to neoadjuvant chemotherapy. METHODS: Pre-treatment DWI, IHC receptor status HER2/HR, and pCR to neoadjuvant chemotherapy of 222 patients from the multi-institutional ACRIN 6698 trial were retrospectively collected. They were pre-separated for development, independent validation, and test-retest. 1316 image features were extracted from DWI-derived ADC maps within manual tumor segmentations. ISHER2 and ISHR were developed by RIDGE logistic regression using non-redundant and test-retest reproducible features relevant to IHC receptor status. We evaluated their association with pCR using area under receiver operating curve (AUC) and odds ratio (OR) after binarization. Their reproducibility was further evaluated using the test-retest set with intra-class coefficient of correlation (ICC). RESULTS: A 5-feature ISHER2 targeting HER2 was developed (AUC = 0.70, 95% CI 0.59 to 0.82) and validated (AUC = 0.72, 95% CI 0.58 to 0.86) with high perturbation repeatability (ICC = 0.92) and test-retest reproducibility (ICC = 0.83). ISHR was developed using 5 features with higher association with HR during development (AUC = 0.75, 95% CI 0.66 to 0.84) and validation (AUC = 0.74, 95% CI 0.61 to 0.86) and similar repeatability (ICC = 0.91) and reproducibility (ICC = 0.82). Both image signatures showed significant associations with pCR with AUC of 0.65 (95% CI 0.50 to 0.80) for ISHER2 and 0.64 (95% CI 0.50 to 0.78) for ISHER2 in the validation cohort. Patients with high ISHER2 were more likely to achieve pCR to neoadjuvant chemotherapy with validation OR of 4.73 (95% CI 1.64 to 13.65, P value = 0.006). Low ISHR patients had higher pCR with OR = 0.29 (95% CI 0.10 to 0.81, P value = 0.021). Molecular subtypes derived from the image signatures showed comparable pCR prediction values to IHC-based molecular subtypes (P value > 0.05). CONCLUSION: Robust ADC-based image signatures were developed and validated for noninvasive evaluation of IHC receptors HER2 and HR. We also confirmed their value in predicting treatment response to neoadjuvant chemotherapy. Further evaluations in treatment guidance are warranted to fully validate their potential as IHC surrogates.


Subject(s)
Breast Neoplasms , Neoadjuvant Therapy , Humans , Female , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Reproducibility of Results , Retrospective Studies , Odds Ratio
8.
Radiol Med ; 128(7): 828-838, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37300736

ABSTRACT

PURPOSE: This study aimed to discover intra-tumor heterogeneity signature and validate its predictive value for adjuvant chemotherapy (ACT) following concurrent chemoradiotherapy (CCRT) in locoregionally advanced nasopharyngeal carcinoma (LA-NPC). MATERIALS AND METHODS: 397 LA-NPC patients were retrospectively enrolled. Pre-treatment contrast-enhanced T1-weighted (CET1-w) MR images, clinical variables, and follow-up were retrospectively collected. We identified single predictive radiomic feature from primary gross tumor volume (GTVnp) and defined predicted subvolume by calculating voxel-wised feature mapping and within GTVnp. We independently validate predictive value of identified feature and associated predicted subvolume. RESULTS: Only one radiomic feature, gldm_DependenceVariance in 3 mm-sigma LoG-filtered image, was discovered as a signature. In the high-risk group determined by the signature, patients received CCRT + ACT achieved 3-year disease free survival (DFS) rate of 90% versus 57% (HR, 0.20; 95%CI, 0.05-0.94; P = 0.007) for CCRT alone. The multivariate analysis showed patients receiving CCRT + ACT had a HR of 0.21 (95%CI: 0.06-0.68, P = 0.009) for DFS compared to those receiving CCRT alone. The predictive value can also be generalized to the subvolume with multivariate HR of 0.27 (P = 0.017) for DFS. CONCLUSION: The signature with its heterogeneity mapping could be a reliable and explainable ACT decision-making tool in clinical practice.


Subject(s)
Nasopharyngeal Neoplasms , Humans , Nasopharyngeal Carcinoma/diagnostic imaging , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Neoplasms/diagnostic imaging , Nasopharyngeal Neoplasms/drug therapy , Retrospective Studies , Cisplatin/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Chemotherapy, Adjuvant/methods , Chemoradiotherapy/methods
9.
J Thorac Imaging ; 38(5): 286-296, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37265243

ABSTRACT

PURPOSE: The inherent characteristics of lung tissue independent of breathing maneuvers may provide fundamental information for function assessment. This paper attempted to correlate textural signatures from computed tomography (CT) with pulmonary function measurements. MATERIALS AND METHODS: Twenty-one lung cancer patients with thoracic 4-dimensional CT, DTPA-single-photon emission CT ventilation ( VNM ) scans, and available spirometry measurements (forced expiratory volume in 1 s, FEV 1 ; forced vital capacity, FVC; and FEV 1 /FVC) were collected. In subregional feature discovery, function-correlated candidates were identified from 79 radiomic features based on the statistical strength to differentiate defected/nondefected lung regions. Feature maps (FMs) of selected candidates were generated on 4-dimensional CT phases for a voxel-wise feature distribution study. Quantitative metrics were applied for validations, including the Spearman correlation coefficient (SCC) and the Dice similarity coefficient for FM- VNM spatial agreement assessments, intraclass correlation coefficient for FM interphase robustness evaluations, and FM-spirometry comparisons. RESULTS: At the subregion level, 8 function-correlated features were identified (effect size>0.330). The FMs of candidates yielded moderate-to-strong voxel-wise correlations with the reference VNM . The FMs of gray level dependence matrix dependence nonuniformity showed the highest robust (intraclass correlation coefficient=0.96 and P <0.0001) spatial correlation, with median SCCs ranging from 0.54 to 0.59 throughout the 10 breathing phases. Its phase-averaged FM achieved a median SCC of 0.60, a median Dice similarity coefficient of 0.60 (0.65) for high (low) functional lung volumes, and a correlation of 0.565 (0.646) between the spatially averaged feature values and FEV 1 (FEV 1 /FVC). CONCLUSIONS: The results provide further insight into the underlying association of specific pulmonary textures with both local ( VNM ) and global (FEV 1 /FVC, FEV 1 ) functions. Further validations of the FM generalizability and the standardization of implementation protocols are warranted before clinically relevant investigations.


Subject(s)
Lung Neoplasms , Lung , Tomography Scanners, X-Ray Computed , Lung/diagnostic imaging , Lung/physiopathology , Respiratory Function Tests , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/physiopathology
10.
Mil Med Res ; 10(1): 22, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37189155

ABSTRACT

Modern medicine is reliant on various medical imaging technologies for non-invasively observing patients' anatomy. However, the interpretation of medical images can be highly subjective and dependent on the expertise of clinicians. Moreover, some potentially useful quantitative information in medical images, especially that which is not visible to the naked eye, is often ignored during clinical practice. In contrast, radiomics performs high-throughput feature extraction from medical images, which enables quantitative analysis of medical images and prediction of various clinical endpoints. Studies have reported that radiomics exhibits promising performance in diagnosis and predicting treatment responses and prognosis, demonstrating its potential to be a non-invasive auxiliary tool for personalized medicine. However, radiomics remains in a developmental phase as numerous technical challenges have yet to be solved, especially in feature engineering and statistical modeling. In this review, we introduce the current utility of radiomics by summarizing research on its application in the diagnosis, prognosis, and prediction of treatment responses in patients with cancer. We focus on machine learning approaches, for feature extraction and selection during feature engineering and for imbalanced datasets and multi-modality fusion during statistical modeling. Furthermore, we introduce the stability, reproducibility, and interpretability of features, and the generalizability and interpretability of models. Finally, we offer possible solutions to current challenges in radiomics research.


Subject(s)
Artificial Intelligence , Neoplasms , Humans , Reproducibility of Results , Neoplasms/diagnostic imaging , Prognosis , Machine Learning
11.
Cancers (Basel) ; 15(7)2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37046693

ABSTRACT

(1) Background: Acute oral mucositis is the most common side effect for nasopharyngeal carcinoma patients receiving radiotherapy. Improper or delayed intervention to severe AOM could degrade the quality of life or survival for NPC patients. An effective prediction method for severe AOM is needed for the individualized management of NPC patients in the era of personalized medicine. (2) Methods: A total of 242 biopsy-proven NPC patients were retrospectively recruited in this study. Radiomics features were extracted from contrast-enhanced CT (CECT), contrast-enhanced T1-weighted (cT1WI), and T2-weighted (T2WI) images in the primary tumor and tumor-related area. Dosiomics features were extracted from 2D or 3D dose-volume histograms (DVH). Multiple models were established with single and integrated data. The dataset was randomized into training and test sets at a ratio of 7:3 with 10-fold cross-validation. (3) Results: The best-performing model using Gaussian Naive Bayes (GNB) (mean validation AUC = 0.81 ± 0.10) was established with integrated radiomics and dosiomics data. The GNB radiomics and dosiomics models yielded mean validation AUC of 0.6 ± 0.20 and 0.69 ± 0.14, respectively. (4) Conclusions: Integrating radiomics and dosiomics data from the primary tumor area could generate the best-performing model for severe AOM prediction.

12.
Eur J Med Res ; 28(1): 126, 2023 Mar 19.
Article in English | MEDLINE | ID: mdl-36935504

ABSTRACT

PURPOSE: The study aimed to predict acute radiation esophagitis (ARE) with grade ≥ 2 for patients with locally advanced lung cancer (LALC) treated with intensity-modulated radiation therapy (IMRT) using multi-omics features, including radiomics and dosiomics. METHODS: 161 patients with stage IIIA-IIIB LALC who received chemoradiotherapy (CRT) or radiotherapy by IMRT with a prescribed dose from 45 to 70 Gy from 2015 to 2019 were enrolled retrospectively. All the toxicity gradings were given following the Common Terminology Criteria for Adverse Events V4.0. Multi-omics features, including radiomics, dosiomics (including dose-volume histogram dosimetric parameters), were extracted based on the planning CT image and three-dimensional dose distribution. All data were randomly divided into training cohorts (N = 107) and testing cohorts (N = 54). In the training cohorts, features with reliably high outcome relevance and low redundancy were selected under random patient subsampling. Four classification models (using clinical factors (CF) only, using radiomics features (RFs) only, dosiomics features (DFs) only, and the hybrid features (HFs) containing clinical factors, radiomics and dosiomics) were constructed employing the Ridge classifier using two-thirds of randomly selected patients as the training cohort. The remaining patient was treated as the testing cohort. A series of models were built with 30 times training-testing splits. Their performances were assessed using the area under the ROC curve (AUC) and accuracy. RESULTS: Among all patients, 51 developed ARE grade ≥ 2, with an incidence of 31.7%. Next, 8990 radiomics and 213 dosiomics features were extracted, and 3, 6, 12, and 13 features remained after feature selection in the CF, DF, RF and DF models, respectively. The RF and HF models achieved similar classification performance, with the training and testing AUCs of 0.796 ± 0.023 (95% confidence interval (CI [0.79, 0.80])/0.744 ± 0.044 (95% CI [0.73, 0.76]) and 0.801 ± 0.022 (95% CI [0.79, 0.81]) (p = 0.74), respectively. The model performances using CF and DF features were poorer, with training and testing AUCs of 0.573 ± 0.026 (95% CI [0.56, 0.58])/ 0.509 ± 0.072 (95% CI [0.48, 0.53]) and 0.679 ± 0.027 (95% CI [0.67, 0.69])/0.604 ± 0.041 (95% CI [0.53, 0.63]) compared with the above two models (p < 0.001), respectively. CONCLUSIONS: In LALC patients treated with CRT IMRT, the ARE grade ≥ 2 can be predicted using the pretreatment radiotherapy image features. To predict ARE, the multi-omics features had similar predictability with radiomics features; however, the dosiomics features and clinical factors had a limited classification performance.


Subject(s)
Esophagitis , Lung Neoplasms , Radiotherapy, Intensity-Modulated , Humans , Radiotherapy, Intensity-Modulated/adverse effects , Radiotherapy, Intensity-Modulated/methods , Retrospective Studies , Multiomics , Radiotherapy Dosage , Lung Neoplasms/radiotherapy , Esophagitis/etiology
13.
Radiother Oncol ; 183: 109578, 2023 06.
Article in English | MEDLINE | ID: mdl-36822357

ABSTRACT

BACKGROUND AND PURPOSE: To investigate the radiomic feature (RF) repeatability via perturbation and its impact on cross-institutional prognostic model generalizability in Nasopharyngeal Carcinoma (NPC) patients. MATERIALS AND METHODS: 286 and 183 NPC patients from two institutions were included for model training and validation. Perturbations with random translations and rotations were applied to contrast-enhanced T1-weighted (CET1-w) MR images. RFs were extracted from primary tumor volume under a wide range of image filtering and discretization settings. RF repeatability was assessed by intraclass correlation coefficient (ICC), which was used to equally separate the RFs into low- and high-repeatable groups by the median value. After feature selection, multivariate Cox regression and Kaplan-Meier analysis were independently employed to develop and analyze prognostic models. Concordance index (C-index) and P-value from log-rank test were used to assess model performance. RESULTS: Most textural RFs from high-pass wavelet-filtered images were susceptible to image perturbations. It was more prominent when a smaller discretization bin number was used (e.g., 8, mean ICC = 0.69). Using high-repeatable RFs for model development yielded a significantly higher C-index (0.63) in the validation cohort than when only low-repeatable RFs were used (0.57, P = 0.024), suggesting higher model generalizability. Besides, significant risk stratification in the validation cohort was observed only when high-repeatable RFs were used (P < 0.001). CONCLUSION: Repeatability of RFs from high-pass wavelet-filtered CET1-w MR images of primary NPC tumor was poor, particularly when a smaller bin number was used. Exclusive use of high-repeatable RFs is suggested to safeguard model generalizability for wide-spreading clinical utilization.


Subject(s)
Magnetic Resonance Imaging , Nasopharyngeal Neoplasms , Humans , Nasopharyngeal Carcinoma/diagnostic imaging , Nasopharyngeal Carcinoma/pathology , Prognosis , Kaplan-Meier Estimate , Magnetic Resonance Imaging/methods , Nasopharyngeal Neoplasms/diagnostic imaging , Nasopharyngeal Neoplasms/radiotherapy , Nasopharyngeal Neoplasms/pathology
14.
Quant Imaging Med Surg ; 13(1): 394-416, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36620146

ABSTRACT

Background: The coronavirus disease 2019 (COVID-19) led to a dramatic increase in the number of cases of patients with pneumonia worldwide. In this study, we aimed to develop an AI-assisted multistrategy image enhancement technique for chest X-ray (CXR) images to improve the accuracy of COVID-19 classification. Methods: Our new classification strategy consisted of 3 parts. First, the improved U-Net model with a variational encoder segmented the lung region in the CXR images processed by histogram equalization. Second, the residual net (ResNet) model with multidilated-rate convolution layers was used to suppress the bone signals in the 217 lung-only CXR images. A total of 80% of the available data were allocated for training and validation. The other 20% of the remaining data were used for testing. The enhanced CXR images containing only soft tissue information were obtained. Third, the neural network model with a residual cascade was used for the super-resolution reconstruction of low-resolution bone-suppressed CXR images. The training and testing data consisted of 1,200 and 100 CXR images, respectively. To evaluate the new strategy, improved visual geometry group (VGG)-16 and ResNet-18 models were used for the COVID-19 classification task of 2,767 CXR images. The accuracy of the multistrategy enhanced CXR images was verified through comparative experiments with various enhancement images. In terms of quantitative verification, 8-fold cross-validation was performed on the bone suppression model. In terms of evaluating the COVID-19 classification, the CXR images obtained by the improved method were used to train 2 classification models. Results: Compared with other methods, the CXR images obtained based on the proposed model had better performance in the metrics of peak signal-to-noise ratio and root mean square error. The super-resolution CXR images of bone suppression obtained based on the neural network model were also anatomically close to the real CXR images. Compared with the initial CXR images, the classification accuracy rates of the internal and external testing data on the VGG-16 model increased by 5.09% and 12.81%, respectively, while the values increased by 3.51% and 18.20%, respectively, for the ResNet-18 model. The numerical results were better than those of the single-enhancement, double-enhancement, and no-enhancement CXR images. Conclusions: The multistrategy enhanced CXR images can help to classify COVID-19 more accurately than the other existing methods.

15.
Diagnostics (Basel) ; 12(11)2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36359456

ABSTRACT

The COVID-19 pandemic has posed a significant global public health threat with an escalating number of new cases and death toll daily. The early detection of COVID-related CXR abnormality potentially allows the early isolation of suspected cases. Chest X-Ray (CXR) is a fast and highly accessible imaging modality. Recently, a number of CXR-based AI models have been developed for the automated detection of COVID-19. However, most existing models are difficult to interpret due to the use of incomprehensible deep features in their models. Confronted with this, we developed an interpretable TSK fuzzy system in this study for COVID-19 detection using radiomics features extracted from CXR images. There are two main contributions. (1) When TSK fuzzy systems are applied to classification tasks, the commonly used binary label matrix of training samples is transformed into a soft one in order to learn a more discriminant transformation matrix and hence improve classification accuracy. (2) Based on the assumption that the samples in the same class should be kept as close as possible when they are transformed into the label space, the compactness class graph is introduced to avoid overfitting caused by label matrix relaxation. Our proposed model for a multi-categorical classification task (COVID-19 vs. No-Findings vs. Pneumonia) was evaluated using 600 CXR images from publicly available datasets and compared against five state-of-the-art AI models in aspects of classification accuracy. Experimental findings showed that our model achieved classification accuracy of over 83%, which is better than the state-of-the-art models, while maintaining high interpretability.

16.
Cancers (Basel) ; 14(19)2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36230812

ABSTRACT

Purpose: To evaluate the effectiveness of features obtained from our proposed incremental-dose-interval-based lung subregion segmentation (IDLSS) for predicting grade ≥ 2 acute radiation pneumonitis (ARP) in lung cancer patients upon intensity-modulated radiotherapy (IMRT). (1) Materials and Methods: A total of 126 non-small-cell lung cancer patients treated with IMRT were retrospectively analyzed. Five lung subregions (SRs) were generated by the intersection of the whole lung (WL) and five sub-regions receiving incremental dose intervals. A total of 4610 radiomics features (RF) from pre-treatment planning computed tomographic (CT) and 213 dosiomics features (DF) were extracted. Six feature groups, including WL-RF, WL-DF, SR-RF, SR-DF, and the combined feature sets of WL-RDF and SR-RDF, were generated. Features were selected by using a variance threshold, followed by a Student t-test. Pearson's correlation test was applied to remove redundant features. Subsequently, Ridge regression was adopted to develop six models for ARP using the six feature groups. Thirty iterations of resampling were implemented to assess overall model performance by using the area under the Receiver-Operating-Characteristic curve (AUC), accuracy, precision, recall, and F1-score. (2) Results: The SR-RDF model achieved the best classification performance and provided significantly better predictability than the WL-RDF model in training cohort (Average AUC: 0.98 ± 0.01 vs. 0.90 ± 0.02, p < 0.001) and testing cohort (Average AUC: 0.88 ± 0.05 vs. 0.80 ± 0.04, p < 0.001). Similarly, predictability of the SR-DF model was significantly stronger than that of the WL-DF model in training cohort (Average AUC: 0.88 ± 0.03 vs. 0.70 ± 0.030, p < 0.001) and in testing cohort (Average AUC: 0.74 ± 0.08 vs. 0.65 ± 0.06, p < 0.001). By contrast, the SR-RF model significantly outperformed the WL-RF model only in the training set (Average AUC: 0.93 ± 0.02 vs. 0.85 ± 0.03, p < 0.001), but not in the testing set (Average AUC: 0.79 ± 0.05 vs. 0.77 ± 0.07, p = 0.13). (3) Conclusions: Our results demonstrated that the IDLSS method improved model performance for classifying ARP with grade ≥ 2 when using dosiomics or combined radiomics-dosiomics features.

17.
Front Pharmacol ; 13: 971849, 2022.
Article in English | MEDLINE | ID: mdl-36199694

ABSTRACT

Purpose: This study investigates the impact of lung function on radiation pneumonitis prediction using a dual-omics analysis method. Methods: We retrospectively collected data of 126 stage III lung cancer patients treated with chemo-radiotherapy using intensity-modulated radiotherapy, including pre-treatment planning CT images, radiotherapy dose distribution, and contours of organs and structures. Lung perfusion functional images were generated using a previously developed deep learning method. The whole lung (WL) volume was divided into function-wise lung (FWL) regions based on the lung perfusion functional images. A total of 5,474 radiomics features and 213 dose features (including dosiomics features and dose-volume histogram factors) were extracted from the FWL and WL regions, respectively. The radiomics features (R), dose features (D), and combined dual-omics features (RD) were used for the analysis in each lung region of WL and FWL, labeled as WL-R, WL-D, WL-RD, FWL-R, FWL-D, and FWL-RD. The feature selection was carried out using ANOVA, followed by a statistical F-test and Pearson correlation test. Thirty times train-test splits were used to evaluate the predictability of each group. The overall average area under the receiver operating characteristic curve (AUC), accuracy, precision, recall, and f1-score were calculated to assess the performance of each group. Results: The FWL-RD achieved a significantly higher average AUC than the WL-RD group in the training (FWL-RD: 0.927 ± 0.031, WL-RD: 0.849 ± 0.064) and testing cohorts (FWL-RD: 0.885 ± 0.028, WL-RD: 0.762 ± 0.053, p < 0.001). When using radiomics features only, the FWL-R group yielded a better classification result than the model trained with WL-R features in the training (FWL-R: 0.919 ± 0.036, WL-R: 0.820 ± 0.052) and testing cohorts (FWL-R: 0.862 ± 0.028, WL-R: 0.750 ± 0.057, p < 0.001). The FWL-D group obtained an average AUC of 0.782 ± 0.032, obtaining a better classification performance than the WL-D feature-based model of 0.740 ± 0.028 in the training cohort, while no significant difference was observed in the testing cohort (FWL-D: 0.725 ± 0.064, WL-D: 0.710 ± 0.068, p = 0.54). Conclusion: The dual-omics features from different lung functional regions can improve the prediction of radiation pneumonitis for lung cancer patients under IMRT treatment. This function-wise dual-omics analysis method holds great promise to improve the prediction of radiation pneumonitis for lung cancer patients.

18.
Front Oncol ; 12: 974467, 2022.
Article in English | MEDLINE | ID: mdl-36313629

ABSTRACT

Background: Using high robust radiomic features in modeling is recommended, yet its impact on radiomic model is unclear. This study evaluated the radiomic model's robustness and generalizability after screening out low-robust features before radiomic modeling. The results were validated with four datasets and two clinically relevant tasks. Materials and methods: A total of 1,419 head-and-neck cancer patients' computed tomography images, gross tumor volume segmentation, and clinically relevant outcomes (distant metastasis and local-regional recurrence) were collected from four publicly available datasets. The perturbation method was implemented to simulate images, and the radiomic feature robustness was quantified using intra-class correlation of coefficient (ICC). Three radiomic models were built using all features (ICC > 0), good-robust features (ICC > 0.75), and excellent-robust features (ICC > 0.95), respectively. A filter-based feature selection and Ridge classification method were used to construct the radiomic models. Model performance was assessed with both robustness and generalizability. The robustness of the model was evaluated by the ICC, and the generalizability of the model was quantified by the train-test difference of Area Under the Receiver Operating Characteristic Curve (AUC). Results: The average model robustness ICC improved significantly from 0.65 to 0.78 (P< 0.0001) using good-robust features and to 0.91 (P< 0.0001) using excellent-robust features. Model generalizability also showed a substantial increase, as a closer gap between training and testing AUC was observed where the mean train-test AUC difference was reduced from 0.21 to 0.18 (P< 0.001) in good-robust features and to 0.12 (P< 0.0001) in excellent-robust features. Furthermore, good-robust features yielded the best average AUC in the unseen datasets of 0.58 (P< 0.001) over four datasets and clinical outcomes. Conclusions: Including robust only features in radiomic modeling significantly improves model robustness and generalizability in unseen datasets. Yet, the robustness of radiomic model has to be verified despite building with robust radiomic features, and tightly restricted feature robustness may prevent the optimal model performance in the unseen dataset as it may lower the discrimination power of the model.

19.
Sci Rep ; 12(1): 10035, 2022 06 16.
Article in English | MEDLINE | ID: mdl-35710850

ABSTRACT

Radiomic model reliability is a central premise for its clinical translation. Presently, it is assessed using test-retest or external data, which, unfortunately, is often scarce in reality. Therefore, we aimed to develop a novel image perturbation-based method (IPBM) for the first of its kind toward building a reliable radiomic model. We first developed a radiomic prognostic model for head-and-neck cancer patients on a training (70%) and evaluated on a testing (30%) cohort using C-index. Subsequently, we applied the IPBM to CT images of both cohorts (Perturbed-Train and Perturbed-Test cohort) to generate 60 additional samples for both cohorts. Model reliability was assessed using intra-class correlation coefficient (ICC) to quantify consistency of the C-index among the 60 samples in the Perturbed-Train and Perturbed-Test cohorts. Besides, we re-trained the radiomic model using reliable RFs exclusively (ICC > 0.75) to validate the IPBM. Results showed moderate model reliability in Perturbed-Train (ICC: 0.565, 95%CI 0.518-0.615) and Perturbed-Test (ICC: 0.596, 95%CI 0.527-0.670) cohorts. An enhanced reliability of the re-trained model was observed in Perturbed-Train (ICC: 0.782, 95%CI 0.759-0.815) and Perturbed-Test (ICC: 0.825, 95%CI 0.782-0.867) cohorts, indicating validity of the IPBM. To conclude, we demonstrated capability of the IPBM toward building reliable radiomic models, providing community with a novel model reliability assessment strategy prior to prospective evaluation.


Subject(s)
Reproducibility of Results , Cohort Studies , Humans , Prognosis
20.
Med Phys ; 49(5): 3159-3170, 2022 May.
Article in English | MEDLINE | ID: mdl-35171511

ABSTRACT

BACKGROUND: Most available four-dimensional (4D)-magnetic resonance imaging (MRI) techniques are limited by insufficient image quality and long acquisition times or require specially designed sequences or hardware that are not available in the clinic. These limitations have greatly hindered the clinical implementation of 4D-MRI. PURPOSE: This study aims to develop a fast ultra-quality (UQ) 4D-MRI reconstruction method using a commercially available 4D-MRI sequence and dual-supervised deformation estimation model (DDEM). METHODS: Thirty-nine patients receiving radiotherapy for liver tumors were included. Each patient was scanned using a time-resolved imaging with interleaved stochastic trajectories (TWIST)-lumetric interpolated breath-hold examination (VIBE) MRI sequence to acquire 4D-magnetic resonance (MR) images. They also received 3D T1-/T2-weighted MRI scans as prior images, and UQ 4D-MRI at any instant was considered a deformation of them. A DDEM was developed to obtain a 4D deformable vector field (DVF) from 4D-MRI data, and the prior images were deformed using this 4D-DVF to generate UQ 4D-MR images. The registration accuracies of the DDEM, VoxelMorph (normalized cross-correlation [NCC] supervised), VoxelMorph (end-to-end point error [EPE] supervised), and the parametric total variation (pTV) algorithm were compared. Tumor motion on UQ 4D-MRI was evaluated quantitatively using region of interest (ROI) tracking errors, while image quality was evaluated using the contrast-to-noise ratio (CNR), lung-liver edge sharpness, and perceptual blur metric (PBM). RESULTS: The registration accuracy of the DDEM was significantly better than those of VoxelMorph (NCC supervised), VoxelMorph (EPE supervised), and the pTV algorithm (all, p < 0.001), with an inference time of 69.3 ± 5.9 ms. UQ 4D-MRI yielded ROI tracking errors of 0.79 ± 0.65, 0.50 ± 0.55, and 0.51 ± 0.58 mm in the superior-inferior, anterior-posterior, and mid-lateral directions, respectively. From the original 4D-MRI to UQ 4D-MRI, the CNR increased from 7.25 ± 4.89 to 18.86 ± 15.81; the lung-liver edge full-width-at-half-maximum decreased from 8.22 ± 3.17 to 3.65 ± 1.66 mm in the in-plane direction and from 8.79 ± 2.78 to 5.04 ± 1.67 mm in the cross-plane direction, and the PBM decreased from 0.68 ± 0.07 to 0.38 ± 0.01. CONCLUSION: This novel DDEM method successfully generated UQ 4D-MR images based on a commercial 4D-MRI sequence. It shows great promise for improving liver tumor motion management during radiation therapy.


Subject(s)
Liver Neoplasms , Magnetic Resonance Imaging , Humans , Image Processing, Computer-Assisted/methods , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/radiotherapy , Motion
SELECTION OF CITATIONS
SEARCH DETAIL
...