Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 226
Filter
1.
Lipids Health Dis ; 23(1): 235, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080765

ABSTRACT

BACKGROUND: Visceral fat accumulation and obesity-induced chronic inflammation have been proposed as early markers for multiple disease states, especially in women. Nevertheless, the potential impact of fat distribution on α1-acid glycoprotein(AGP), a marker of inflammation, remains unclear. This research was conducted to investigate the relationships among obesity, fat distribution, and AGP levels. METHODS: A cross-sectional observational study was performed using blood samples from adult females recruited through the National Health and Nutrition Examination Survey from 2015 to 2018. Serum levels of AGP were measured using the Tina-quant α-1-Acid Glycoprotein Gen.2 assay. Based on the fat distribution data obtained from dual-energy X-ray absorptiometry assessments, body mass index (BMI), total percent fat (TPF), android percent fat (APF), gynoid percent fat (GPF), android fat/gynoid fat ratio (AGR), visceral percent fat (VPF), subcutaneous percent fat (SPF), visceral fat/subcutaneous fat ratio (VSR) were used as dependent variables. To investigate the link between fat distribution and AGP, multivariate linear regression analysis was utilized. Furthermore, a sensitivity analysis was also performed. RESULTS: The present study included 2,295 participants. After adjusting for covariates, BMI, TPF, APF, GPF, VPF, and SPF were found to be positively correlated with AGP levels (BMI: ß = 23.65 95%CI:20.90-26.40; TPF: ß = 25.91 95%CI:23.02-28.80; APF: ß = 25.21 95%CI:22.49-27.93; GPF: ß = 19.65 95%CI:16.96-22.34; VPF: ß = 12.49 95%CI:9.08-15.90; SPF: ß = 5.69, 95%CI:2.89-8.49; AGR: ß = 21.14 95%CI:18.16-24.12; VSR: ß = 9.35 95%CI:6.11-12.59, all P < 0.0001). All the above indicators exhibited a positive dose-response relationship with AGP. In terms of fat distribution, both AGR and VSR showed positive associations with AGP (P for trend < 0.0001). In particular, when compared to individuals in tertile 1 of AGR, participants in tertiles 2 and 3 had 13.42 mg/dL (95% CI 10.66-16.18) and 21.14 mg/dL (95% CI 18.16-24.12) higher AGP levels, respectively. Participants in the highest tertile of VSR were more likely to exhibit a 9.35 mg/dL increase in AGP compared to those in the lowest tertile (95% CI 6.11-12.59). CONCLUSIONS: Overall, this study revealed a positive dose-dependent relationship between fat proportion/distribution and AGP levels in women. These findings suggest that physicians can associate abnormal serum AGP and obesity with allow timely interventions.


Subject(s)
Body Mass Index , Intra-Abdominal Fat , Orosomucoid , Humans , Female , Orosomucoid/metabolism , Orosomucoid/analysis , Adult , Middle Aged , Cross-Sectional Studies , United States/epidemiology , Intra-Abdominal Fat/metabolism , Obesity/blood , Absorptiometry, Photon , Body Fat Distribution , Nutrition Surveys
2.
Heliyon ; 10(13): e34028, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39071574

ABSTRACT

The purpose of this study was to assess the influence and the clinical effectiveness of the short stature homeobox 2 (SHOX2) and ras association domain family 1A (RASSF1A) genes by tissue sampling through ultrasound endoscopy-guided fine-needle aspiration (EUS-FNA) as auxiliary diagnostic tools for pancreatic cancer (PC). Methylation markers were detected in 96 patients using real-time fluorescence quantitative PCR (qPCR), and the performance of this diagnostic assay was compared with CA19-9, CEA, and puncture fluid-based exfoliative cytology using receiver operating characteristic curve (ROC) analysis. The PC group exhibited higher methylation rates for SHOX2, RASSF1A, and the combined assay of both genes compared to the control group (95.7 % vs. 54.0 %, 78.3 % vs. 36.0 %, and 73.9 % vs. 16.0 %, P < 0.05). The areas under the ROC curve (AUC) for CA19-9, CEA, liquid-based exfoliative cytology, SHOX2, RASSF1A, the combination of SHOX2 and RASSF1A, the combination assay with CEA, CA19-9, and liquid-based exfoliative cytology were 0.827, 0.692, 0.767, 0.770, 0.732, 0.870, 0.870, 0.933, and 0.900, respectively. Therefore, the methylation assay based on the combined SHOX2 and RASSF1A genes in EUS-FNA puncture fluid is more effective than using a single gene, liquid-based exfoliative cytology, or intravenous tumor markers for diagnosing PC. Combining the conventional marker CA19-9 enhances the diagnostic value, making it a promising approach to complement histology and cytology.

3.
Ecotoxicol Environ Saf ; 283: 116783, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39067076

ABSTRACT

Residues of herbicides with the extensive applications may impact the soil ecosystem and ultimately threaten agricultural sustainability. However, the effects of long-term herbicide residues on soil multifunctionality and the soil microbial community remain poorly understood. Here, we evaluated relationships between soil multifunctionality and soil microbial communities with residual herbicide concentrations by surveying and analyzing 62 black soil samples collected from an agricultural area in northeastern China. Total residual herbicide concentrations varied from 35 to 568 µg/kg in the soil samples. The response of soil multifunctionality to increasing residual herbicide concentrations exhibited an inverted U-shaped relationship with a peak at approximately 310 µg/kg, with net mineralized organic nitrogen (Nm) and total nitrogen (TN) exhibiting the same trend. Microbial community richness was significantly lower in soil samples with high residual herbicide concentrations (> 310 µg/kg, HG) compared to low residual herbicide concentrations (< 310 µg/kg, LG). In addition, the relative abundances of specific keystone microbial genera differed significantly between LG and HG: norank_f_Acetobacteraceae, norank_f_Caldilineaceae, Candidatus_Alysiosphaera, and Gonytrichum. The relative abundances of these genera were also significantly correlated with soil multifunctionality. Structural equation models (SEMs) further showed that herbicide residues influenced soil multifunctionality by affecting these specific keystone genera. Our study demonstrates that long-term herbicide residues significantly impact the multifunctionality of agricultural black soil, where low concentrations stimulate while high concentrations inhibit, underscoring the need for reasonable application of herbicides to maintain soil ecosystem health.

4.
Bioresour Technol ; 404: 130918, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823562

ABSTRACT

Symbiosis between Glycine max and Bradyrhizobium diazoefficiens were used as a model system to investigate whether biohydrogen utilization promotes the transformation of the tetrachlorobiphenyl PCB77. Both a H2 uptake-positive (Hup+) strain (wild type) and a Hup- strain (a hupL deletion mutant) were inoculated into soybean nodules. Compared with Hup- nodules, Hup+ nodules increased dechlorination significantly by 61.1 % and reduced the accumulation of PCB77 in nodules by 37.7 % (p < 0.05). After exposure to nickel, an enhancer of uptake hydrogenase, dechlorination increased significantly by 2.2-fold, and the accumulation of PCB77 in nodules decreased by 54.4 % (p < 0.05). Furthermore, the tetrachlorobiphenyl transformation in the soybean root nodules was mainly testified to be mediated by nitrate reductase (encoded by the gene NR) for tetrachlorobiphenyl dechlorination and biphenyl-2,3-diol 1,2-dioxygenase (bphC) for biphenyl degradation. This study demonstrates for the first time that biohydrogen utilization has a beneficial effect on tetrachlorobiphenyl biotransformation in a legume-rhizobium symbiosis.


Subject(s)
Glycine max , Hydrogen , Polychlorinated Biphenyls , Symbiosis , Polychlorinated Biphenyls/metabolism , Symbiosis/physiology , Glycine max/metabolism , Glycine max/microbiology , Hydrogen/metabolism , Rhizobium/physiology , Biotransformation , Bradyrhizobium/metabolism , Bradyrhizobium/physiology , Biodegradation, Environmental
5.
Anal Sci ; 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38909351

ABSTRACT

Ammonia nitrogen (AN) pollution frequently occurs in urban rivers with the continuous acceleration of industrialization. Monitoring AN pollution levels and tracing its complex sources often require large-scale testing, which are time-consuming and costly. Due to the lack of reliable data samples, there were few studies investigating the feasibility of water quality prediction of AN concentration with a high fluctuation and non-stationary change through data-driven models. In this study, four deep-learning models based on neural network algorithms including artificial neural network (ANN), recurrent neural network (RNN), long short-term memory (LSTM), and gated recurrent unit (GRU) were employed to predict AN concentration through some easily monitored indicators such as pH, dissolved oxygen, and conductivity, in a real AN-polluted river. The results showed that the GRU model achieved optimal prediction performance with a mean absolute error (MAE) of 0.349 and coefficient of determination (R2) of 0.792. Furthermore, it was found that data preprocessing by the VMD technique improved the prediction accuracy of the GRU model, resulting in an R2 value of 0.822. The prediction model effectively detected and warned against abnormal AN pollution (> 2 mg/L), with a Recall rate of 93.6% and Precision rate of 72.4%. This data-driven method enables reliable monitoring of AN concentration with high-frequency fluctuations and has potential applications for urban river pollution management.

6.
J Environ Sci (China) ; 145: 50-63, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38844323

ABSTRACT

Herbicides (HBCs) are extensively used in modern agriculture. However, their potential negative impacts on environmental media have emerged as a significant environmental concern. In this study, we employed positive matrix factorization (PMF) to identify the potential sources of HBCs. Furthermore, we utilized a multi-matrix ecological risk model to assess the risks associated with HBCs in both surface water and groundwater in the black soil region of Northeast China. The findings revealed that the levels of ∑15HBCs in surface water and groundwater ranged from 585.84 to 6466.96 ng/L and 4.80 to 11,774.64 ng/L, respectively. The PMF results indicated that surface runoff and erosion accounted for 50% of the total HBCs in water, serving as the primary sources. All tested HBCs exhibited acute risk values within acceptable levels. The risk index for the ∑15HBCs was categorized as "moderate risk" in 31% of the surface waters and 13% of the groundwaters. However, 4% of the groundwater sampling sites reached the "high risk" level. The chronic risk quotient of ∑15HBCs in surface water and groundwater was 92% and 62% at the "high risk" level, respectively. Interestingly, non-carcinogenic HBCs contributed more significantly to the ecotoxicology of the aquatic system than carcinogenic HBCs. This study provides comprehensive information on the legacy of HBCs in water bodies and emphasizes the potential risks posed by HBCs to aquatic systems. The results obtained from this study could help relevant management authorities in developing and implementing effective regulations to mitigate the ecological and environmental risks associated with HBCs.


Subject(s)
Environmental Monitoring , Groundwater , Herbicides , Water Pollutants, Chemical , China , Risk Assessment , Herbicides/analysis , Herbicides/toxicity , Water Pollutants, Chemical/analysis , Groundwater/chemistry , Cities
7.
J Environ Manage ; 360: 121114, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754192

ABSTRACT

Indigenous soil microbial communities play a pivotal role in the in situ bioremediation of contaminated sites. However, research on the distribution characteristics of microbial communities at various soil depths remains limited. In particular, there is little information on the assembly of microbial communities, especially those with degradation potential, in the vadose and saturated zones of hydrocarbon-contaminated sites. In this study, 18 soil samples were collected from the vadose zone and saturated zone at a long-term hydrocarbon-contaminated site. The diversity, composition, and driving factors of assembly of the soil bacterial community were determined by high-throughput sequencing analysis. Species richness and diversity were significantly higher in the vadose zone soils than in the saturated zone soils. Significant differences in abundance at both the phylum and genus levels were observed between the two zones. Soil bacterial community assembly was driven by the combination of pollution stress and nutrients in the vadose zone but by nutrient limitations in the saturated zone. The abundance of dechlorinating bacteria was greater in the saturated zone soils than in the vadose zone soils. Compared with contaminant concentrations, nutrient levels had a more pronounced impact on the abundance of dechlorinating bacteria. In addition, the interactions among dechlorinating bacterial populations were stronger in the saturated zone soils than in the vadose zone soils. These findings underscore the importance of comprehensively understanding indigenous microbial communities, especially those with degradation potential, across different soil layers to devise specific, effective in situ bioremediation strategies for contaminated sites.


Subject(s)
Bacteria , Biodegradation, Environmental , Hydrocarbons , Soil Microbiology , Soil Pollutants , Soil , Soil Pollutants/metabolism , Hydrocarbons/metabolism , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification , Soil/chemistry
8.
Int Wound J ; 21(4): e14862, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38572823

ABSTRACT

Oral mucosa is an ideal model for studying scarless wound healing. Researchers have shown that the key factors which promote scarless wound healing already exist in basal state of oral mucosa. Thus, to identify the other potential factors in basal state of oral mucosa will benefit to skin wound healing. In this study, we identified eight gene modules enriched in wound healing stages of human skin and oral mucosa through co-expression analysis, among which the module M8 was only module enriched in basal state of oral mucosa, indicating that the genes in module M8 may have key factors mediating scarless wound healing. Through bioinformatic analysis of genes in module M8, we found IGF2 may be the key factor mediating scarless wound healing of oral mucosa. Then, we purified IGF2 protein by prokaryotic expression, and we found that IGF2 could promote the proliferation and migration of HaCaT cells. Moreover, IGF2 promoted wound re-epithelialization and accelerated wound healing in a full-thickness skin wound model. Our findings identified IGF2 as a factor to promote skin wound healing which provide a potential target for wound healing therapy in clinic.


Subject(s)
Skin , Wound Healing , Humans , Skin/metabolism , Re-Epithelialization , Mouth Mucosa , Fibroblasts/metabolism , Insulin-Like Growth Factor II/genetics , Insulin-Like Growth Factor II/metabolism
9.
Sci Total Environ ; 927: 171966, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38537831

ABSTRACT

Benzo(a)pyrene (BaP) is posing serious threats to soil ecosystems and its bioremediation usually limited by environmental factors and microbial activity. Humic acid (HA), a ubiquitous heterogeneous organic matter, which could affect the fate of environmental pollutants. However, the impact of HA on bioremediation of organic contamination remains controversial. In the present study, the biodegradation of BaP by Paracoccus aminovorans HPD-2 with and without HA was explored. Approximately 87.4 % of BaP was biodegraded in the HPD-2 treatment after 5 days of incubation, whereas the addition of HA dramatically reduced BaP biodegradation to 56.0 %. The limited BaP biodegradation in the HA + HPD-2 treatment was probably due to the decrease of BaP bioavailability which induced by the adsorption of HA with unspecific interactions. The excitation-emission matrix (EEM) of fluorescence characteristics showed that strain HPD-2 was responsible for the presence of protein-like substances and the microbial original humic substances in the HPD-2 treatment. Addition of HA would result in the increase of soluble microbial humic-like material, which should ascribe to the biodegradation of BaP and probably utilization of HA. Furthermore, both the growth and survival of strain HPD-2 were inhibited in the HA + HPD-2 treatment, because of the limited available carbon source (i.e. BaP) at the presence of HA. The expression of gene1789 and gene2589 dramatically decreased in the HA + HPD-2 treatment, and this should be responsible for the decrease of BaP biodegradation as well. This study reveals the mechanism that HA affect the BaP biodegradation, and the decrease of biodegradation should ascribe to the interaction of HA and bacterial strain. Thus, the bioremediation strategies of PAHs need to consider the effects of organic matter in environment.


Subject(s)
Benzo(a)pyrene , Biodegradation, Environmental , Humic Substances , Paracoccus , Soil Pollutants , Benzo(a)pyrene/metabolism , Paracoccus/metabolism , Soil Pollutants/metabolism , Soil Microbiology
10.
Front Physiol ; 15: 1297810, 2024.
Article in English | MEDLINE | ID: mdl-38434138

ABSTRACT

Diabetic foot ulcers (DFU) and cutaneous lupus erythematosus (CLE) are both diseases that can seriously affect a patient's quality of life and generate economic pressure in society. Symptomatically, both DLU and CLE exhibit delayed healing and excessive inflammation; however, there is little evidence to support a molecular and cellular connection between these two diseases. In this study, we investigated potential common characteristics between DFU and CLE at the molecular level to provide new insights into skin diseases and regeneration, and identify potential targets for the development of new therapies. The gene expression profiles of DFU and CLE were obtained from the Gene Expression Omnibus (GEO) database and used for analysis. A total of 41 common differentially expressed genes (DEGs), 16 upregulated genes and 25 downregulated genes, were identified between DFU and CLE. GO and KEGG analysis showed that abnormalities in epidermal cells and the activation of inflammatory factors were both involved in the occurrence and development of DFU and CLE. Protein-protein interaction network (PPI) and sub-module analysis identified enrichment in seven common key genes which is KRT16, S100A7, KRT77, OASL, S100A9, EPGN and SAMD9. Based on these seven key genes, we further identified five miRNAs(has-mir-532-5p, has-mir-324-3p,has-mir-106a-5p,has-mir-20a-5p,has-mir-93-5p) and7 transcription factors including CEBPA, CEBPB, GLI1, EP30D, JUN,SP1, NFE2L2 as potential upstream molecules. Functional immune infiltration assays showed that these genes were related to immune cells. The CIBERSORT algorithm and Pearson method were used to determine the correlations between key genes and immune cells, and reverse key gene-immune cell correlations were found between DFU and CLE. Finally, the DGIbd database demonstrated that Paquinimod and Tasquinimod could be used to target S100A9 and Ribavirin could be used to target OASL. Our findings highlight common gene expression characteristics and signaling pathways between DFU and CLE, indicating a close association between these two diseases. This provides guidance for the development of targeted therapies and mutual interactions.

11.
Heliyon ; 10(3): e24981, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38318011

ABSTRACT

Inadequate information sharing and difficult information diffusion are the main factors that cause upstream and downstream enterprises to default on supply chain finance. Blockchain technology, which exploits distributed storage and a consensus mechanism, can provide effective solutions to overcome these problems such as information sharing. When blockchain technology is adopted by the enterprises that comprise the supply chain finance business, this technology shows a diffusion trend. As a result, the decision pertaining to the application of novel technologies is affected. Therefore, to investigate the diffusion mechanism pertaining to the blockchain technology that is applied in supply chain finance, the study exploited the idea of a class of SEIR infectious disease models, and built a blockchain model that considers the supply chain financial system. Besides, the study verifies the stability of the model by constructing a Lyapunov function. The results indicate that the basic reproduction number determines the proliferation of the blockchain technology. When the basic reproduction number is less than 1, the proliferation of the blockchain technology that is applied in supply chain finance system would terminate. By contrast, when the basic reproduction number is greater than 1, during the average infection period, the number of non-adopting enterprises that accept the blockchain technology becomes greater than 1, which can maintain a continuous impact on supply chain finance system. Over time, the number of enterprises that accept blockchain technology tends to be stable. Through numerical simulations that consider the influencing parameters pertaining to the basic regeneration number, which has important effect on blockchain technology diffusion, we enlarge the diffusion efficiency and increase the transfer rate of potential on-chain enterprises or decrease the default exit rate. As a result, we facilitate the diffusion of blockchain technology in the system.

12.
J Hazard Mater ; 465: 133121, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38056279

ABSTRACT

Paddy soils near electrical and electronic waste recycling sites generally suffer from co-pollution of polybrominated diphenyl ethers and 3,4-dichloroaniline (3,4-DCA). This study tested the feasibility of reduced graphene oxide (rGO) to stimulate the simultaneous abatement of 2,2',4,4',5-pentabromodiphenyl ether (BDE99) and 3,4-DCA in percogenic paddy soil (PPS) and hydromorphic paddy soil (HPS). rGO improved the debromination extent of BDE99 and the transformation rate of 3,4-DCA in PPS, but did not affect their abatement in HPS. The inhibition of specific fermenters, acetogens, and methanogens after rGO addition contributed to BDE99 debromination by obligate organohalide-respiring bacteria (OHRB) in PPS, but relevant soil microbiomes (e.g., fermenters, acetogens, methanogens, and obligate OHRB) responded little to rGO in HPS. For 3,4-DCA, the enhanced activities of nitrogen-metabolic chloroaniline degraders by rGO increased its transformation rate in PPS, but was compensated by the decreased biotransformation from 3,4-DCA to 3,4-dichloroacetanilide after the addition of rGO to HPS. The discrepant stimulation of rGO between PPS and HPS was mediated by soil microbiome resistance. rGO has the application potential to stimulate the simultaneous abatement of polybrominated diphenyl ethers and chloroanilines in paddy soils with relatively low microbiome resistance.


Subject(s)
Aniline Compounds , Graphite , Halogenated Diphenyl Ethers , Soil Pollutants , Halogenated Diphenyl Ethers/analysis , Soil , Environmental Monitoring , Soil Pollutants/analysis , Bacteria
13.
Sci Total Environ ; 912: 169048, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38061654

ABSTRACT

Biodegradable plastics (BPs) have gained increased attention as a promising solution to plastics pollution problem. However, BPs often exhibited limited in situ biodegradation in the soil environment, so they may also release microplastics (MPs) into soils just like conventional non-degradable plastics. Therefore, it is necessary to evaluate the impacts of biodegradable MPs (BMPs) on soil ecosystem. Here, we explored the effects of biodegradable poly(butylene adipate-co-terephthalate) (PBAT) MPs and conventional polyethylene (PE) MPs on soil-plant (pakchoi) system at three doses (0.02 %, 0.2 %, and 2 %, w/w). Results showed that PBAT MPs reduced plant growth in a dose-dependent pattern, while PE MPs exhibited no significant phytotoxicity. High-dose PBAT MPs negatively affected the rhizosphere soil nutrient availability, e.g., decreased available phosphorus and available potassium. Metagenomics analysis revealed that PBAT MPs caused more serious interference with the rhizosphere microbial community composition and function than PE MPs. In particular, compared with PE MPs, PBAT MPs induced greater changes in functional potential of carbon, nitrogen, phosphorus, and sulfur cycles, which may lead to alterations in soil biogeochemical processes and ecological functions. Moreover, untargeted metabolomics showed that PBAT MPs and PE MPs differentially affect plant root exudates. Mantel tests, correlation analysis, and partial least squares path model analysis showed that changes in plant growth and root exudates were significantly correlated with soil properties and rhizosphere microbiome driven by the MPs-rhizosphere interactions. This work improves our knowledge of how biodegradable and conventional non-degradable MPs affect plant growth and the rhizosphere ecology, highlighting that BMPs might pose greater threat to soil ecosystems than non-degradable MPs.


Subject(s)
Biodegradable Plastics , Brassica , Microplastics , Rhizosphere , Ecosystem , Plastics , Exudates and Transudates , Biodegradation, Environmental , Polyethylene , Plant Exudates , Phosphorus , Soil
14.
ISME J ; 17(12): 2169-2181, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37775536

ABSTRACT

Nitrogen is a limiting nutrient for degraders function in hydrocarbon-contaminated environments. Biological nitrogen fixation by diazotrophs is a natural solution for supplying bioavailable nitrogen. Here, we determined whether the diazotroph Azotobacter chroococcum HN can provide nitrogen to the polycyclic aromatic hydrocarbon-degrading bacterium Paracoccus aminovorans HPD-2 and further explored the synergistic interactions that facilitate pyrene degradation in nitrogen-deprived environments. We found that A. chroococcum HN and P. aminovorans HPD-2 grew and degraded pyrene more quickly in co-culture than in monoculture. Surface-enhanced Raman spectroscopy combined with 15N stable isotope probing (SERS - 15N SIP) demonstrated that A. chroococcum HN provided nitrogen to P. aminovorans HPD-2. Metabolite analysis and feeding experiments confirmed that cross-feeding occurred between A. chroococcum HN and P. aminovorans HPD-2 during pyrene degradation. Transcriptomic and metabolomic analyses further revealed that co-culture significantly upregulated key pathways such as nitrogen fixation, aromatic compound degradation, protein export, and the TCA cycle in A. chroococcum HN and quorum sensing, aromatic compound degradation and ABC transporters in P. aminovorans HPD-2. Phenotypic and fluorescence in situ hybridization (FISH) assays demonstrated that A. chroococcum HN produced large amounts of biofilm and was located at the bottom of the biofilm in co-culture, whereas P. aminovorans HPD-2 attached to the surface layer and formed a bridge-like structure with A. chroococcum HN. This study demonstrates that distinct syntrophic interactions occur between A. chroococcum HN and P. aminovorans HPD-2 and provides support for their combined use in organic pollutant degradation in nitrogen-deprived environments.


Subject(s)
Nitrogen Fixation , Nitrogen , Nitrogen/metabolism , In Situ Hybridization, Fluorescence , Pyrenes
15.
J Clin Lab Anal ; 37(13-14): e24945, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37488812

ABSTRACT

BACKGROUND: Glucocorticoids (GCs) were the essential drugs for systemic lupus erythematosus (SLE). However, different patients differ substantially in their response to GCs treatment. Our current study aims at investigating whether climate variability and climate-gene interaction influence SLE patients' response to the therapy of GCs. METHODS: In total, 778 SLE patients received therapy of GCs for a study of 12-week follow-up. The efficacy of GCs treatment was evaluated using the Systemic Lupus Erythematosus Disease Activity Index. The climatic data were provided by China Meteorological Data Service Center. Additive and multiplicative interactions were examined. RESULTS: Compared with patients with autumn onset, the efficacy of GCs in patients with winter onset is relatively poor (ORadj = 1.805, 95%CIadj : 1.181-3.014, padj = 0.020). High mean relative humidity during treatment decreased the efficacy of GCs (ORadj = 1.033, 95%CIadj : 1.008-1.058, padj = 0.011), especially in female (ORadj = 1.039, 95%CIadj : 1.012-1.067, padj = 0.004). There was a significant interaction between sunshine during treatment and TRAP1 gene rs12597773 on GCs efficacy (Recessive model: AP = 0.770). No evidence of significant interaction was found between climate factors and the GR gene polymorphism on the improved GCs efficacy in the additive model. Multiplicative interaction was found between humidity in the month prior to treatment and GR gene rs4912905 on GCs efficacy (Dominant model: OR = 0.470, 95%CI: 0.244-0.905, p = 0.024). CONCLUSIONS: Our findings suggest that climate variability influences SLE patients' response to the therapy of GCs. Interactions between climate and TRAP1/GR gene polymorphisms were related to GCs efficacy. The results guide the individualized treatment of SLE patients.


Subject(s)
Glucocorticoids , Lupus Erythematosus, Systemic , Humans , Female , Glucocorticoids/therapeutic use , Lupus Erythematosus, Systemic/drug therapy , Lupus Erythematosus, Systemic/genetics , Seasons , Polymorphism, Single Nucleotide/genetics , China/epidemiology , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/therapeutic use
16.
J Hazard Mater ; 458: 131841, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37331062

ABSTRACT

The open incineration of electrical and electronic waste (e-waste) results in the accumulation of pyrogenic carbon in the soil. However, the effect of the e-waste-derived pyrogenic carbon (E-PyC) on the performance of soil washing at e-waste incineration sites remains unclear. In this study, the effectiveness of a citrate-surfactant mixed solution in removing copper (Cu) and decabromodiphenyl ether (BDE209) at two e-waste incineration sites was evaluated. The removal efficiencies of Cu (24.6-51.3%) and BDE209 (13.0-27.9%) were low in both soils and were not significantly improved by ultrasonic. Soil organic matter analysis, hydrogen peroxide and thermal pretreatment experiments, and microscale soil particle characterization demonstrated that the poor removal of soil Cu and BDE209 was due to steric effects of E-PyC on the release of the solid fraction of pollutants and the competitive sorption of the labile fraction of pollutants by E-PyC. Weathering of soil Cu weakened the influence of E-PyC but strengthened the negative impact of natural organic matter (NOM) on soil Cu removal by promoting complexation between NOM and Cu2+ ions. This study demonstrates that the negative effect of E-PyC on Cu and BDE209 removal by soil washing is non-negligible, which has implications for decontaminating e-waste incineration sites by soil washing.

17.
Cancer Med ; 12(16): 16805-16814, 2023 08.
Article in English | MEDLINE | ID: mdl-37387602

ABSTRACT

BACKGROUND AND AIMS: Hepatocellular carcinoma (HCC) with portal vein tumor thrombus (PVTT) predicts a poor prognosis. The aim of the present study was to evaluate the efficacy and safety of using lenvatinib and camrelizumab combined with transarterial chemoembolization (TACE) to treat HCC with PVTT. METHODS: This was a single-arm, open-label, multicenter, and prospective study. Eligible patients with advanced HCC accompanied by PVTT were enrolled to receive TACE combined with lenvatinib and camrelizumab. The primary endpoint was progression-free survival (PFS), while the secondary endpoints included objective response rate (ORR), disease control rate (DCR), overall survival (OS), and safety. RESULTS: Between April 2020 and April 2022, 69 patients were successfully enrolled. With a median follow-up time of 17.3 months, the median age of the patient cohort was 57 years (range: 49-64 years). According to modified Response Evaluation Criteria in Solid Tumors, the ORR was 26.1% (18 partial responses [PRs]) and the DCR was 78.3% (18 PRs, 36 stable diseases [SDs]). The median PFS (mPFS) and median OS (mOS) were 9.3 and 18.2 months, respectively. And tumor number >3 was identified as an adverse risk factor for both PFS and OS. The most common adverse events across all grades included fatigue (50.7%), hypertension (46.4%), and diarrhea (43.5%). Twenty-four patients (34.8%) experienced Grade 3 toxicity that was relieved by dose adjustment and symptomatic treatment. No treatment-related deaths occurred. CONCLUSIONS: TACE combined with lenvatinib and camrelizumab is a well-tolerated modality treatment with promising efficacy for advanced HCC with PVTT.


Subject(s)
Carcinoma, Hepatocellular , Chemoembolization, Therapeutic , Liver Neoplasms , Thrombosis , Humans , Middle Aged , Carcinoma, Hepatocellular/pathology , Prospective Studies , Liver Neoplasms/pathology , Portal Vein/pathology , Chemoembolization, Therapeutic/adverse effects , Treatment Outcome , Thrombosis/pathology , Retrospective Studies
18.
J Vis Exp ; (196)2023 06 02.
Article in English | MEDLINE | ID: mdl-37335114

ABSTRACT

Root exudates are the main media of information communication and energy transfer between plant roots and the surrounding environment. The change in secretion of root exudates is usually an external detoxification strategy for plants under stress conditions. This protocol aims to introduce general guidelines for the collection of alfalfa root exudates to study the impact of di(2-ethylhexyl) phthalate (DEHP) on metabolite production. First, alfalfa seedlings are grown under DEHP stress in a hydroponic culture experiment. Second, the plants are transferred to centrifuge tubes containing 50 mL of sterilized ultrapure water for 6 h to collect root exudates. The solutions are then freeze-dried in a vacuum freeze dryer. The frozen samples are extracted and derivatized with bis(trimethylsilyl)) trifluoroacetamide (BSTFA) reagent. Subsequently, the derivatized extracts are measured using a gas chromatograph system coupled with a time-of-flight mass spectrometer (GC-TOF-MS). The acquired metabolite data are then analyzed based on bioinformatic methods. Differential metabolites and significantly changed metabolism pathways should be deeply explored to reveal the impact of DEHP on alfalfa in view of root exudates.


Subject(s)
Diethylhexyl Phthalate , Phthalic Acids , Diethylhexyl Phthalate/metabolism , Medicago sativa/metabolism , Exudates and Transudates/metabolism , Plants/metabolism
19.
Environ Pollut ; 333: 121960, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37271366

ABSTRACT

Microplastics (MPs), an emerging pollutant of concern, widely cooccurred with heavy metals in soil, however, little is known about the combined effects of the interactions of MPs and cadmium (Cd) on the soil-plant system. In this study, the combined effects of several types of MPs and soil Cd contamination on Brassica juncea growth, Cd uptake, and soil microbial carbon metabolism were investigated in a 50-day pot experiment. Aged polyethylene (PE), aged polypropylene (PP), biodegradable polybutylene adipate terephthalate (PBAT) and polylactic acid (PLA) displayed moderate phytotoxicity, with reductions in leaf chlorophyll content and shoot biomass. Compared with the control treatment without MPs or B. juncea, B. juncea growth significantly increased the soil pH by 0.3 pH units, and the growth of B. juncea in the presence of biodegradable PBAT or PLA MPs increased the soil pH by an additional 0.4 or 0.6 pH units, respectively. The presence of PBAT or PLA MPs greatly reduced soil diethylenetriamine pentaacetic acid (DTPA)-extractable Cd concentrations and plant Cd accumulation. The Cd bioconcentration factor was higher in roots than shoots in all treatments except the treatment containing PBAT MPs. The average well color development (AWCD), an indicator of metabolic activity, was highest in the treatment with B. juncea alone and was reduced by both biodegradable and conventional MPs. The microbial utilization efficiency of esters and alcohols was enhanced in the treatment with PBAT MPs, whereas carboxylic acids were preferentially utilized in the treatment with PLA MPs. These findings indicate that co-exposure to MPs and Cd may alter soil microenvironmental characteristics such as soil pH, leading to changes in Cd bioavailability, plant growth and Cd accumulation, and the microbial community's capacity to metabolize carbon. These effects of MPs in soil warrant further exploration.


Subject(s)
Microplastics , Soil Pollutants , Soil/chemistry , Plastics/toxicity , Cadmium/analysis , Polyesters , Carbon , Soil Pollutants/analysis
20.
Environ Int ; 176: 107962, 2023 06.
Article in English | MEDLINE | ID: mdl-37196568

ABSTRACT

Endogenous hydrogen (H2) is produced through rhizobium-legume associations in terrestrial ecosystems worldwide through dinitrogen fixation. In turn, this gas may alter rhizosphere microbial community structure and modulate biogeochemical cycles. However, very little is understood about the role that this H2 leaking to the rhizosphere plays in shaping the persistent organic pollutants degrading microbes in contaminated soils. Here, we combined DNA-stable isotope probing (DNA-SIP) with metagenomics to explore how endogenous H2 from the symbiotic rhizobium-alfalfa association drives the microbial biodegradation of tetrachlorobiphenyl PCB 77 in a contaminated soil. The results showed that PCB77 biodegradation efficiency increased significantly in soils treated with endogenous H2. Based on metagenomes of 13C-enriched DNA fractions, endogenous H2 selected bacteria harboring PCB degradation genes. Functional gene annotation allowed the reconstruction of several complete pathways for PCB catabolism, with different taxa conducting successive metabolic steps of PCB metabolism. The enrichment through endogenous H2 of hydrogenotrophic Pseudomonas and Magnetospirillum encoding biphenyl oxidation genes drove PCB biodegradation. This study proves that endogenous H2 is a significant energy source for active PCB-degrading communities and suggests that elevated H2 can influence the microbial ecology and biogeochemistry of the legume rhizosphere.


Subject(s)
Fabaceae , Polychlorinated Biphenyls , Rhizobium , Soil Pollutants , Polychlorinated Biphenyls/analysis , Rhizobium/metabolism , Fabaceae/metabolism , Ecosystem , Soil Pollutants/analysis , Biodegradation, Environmental , Soil/chemistry , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...