Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; : e202404186, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691059

ABSTRACT

The introduction of nitrogen-containing functional groups to chiral polymer backbones enables the tailoring of physical properties and offers opportunities for further post-polymerization modification. However, the substrate scope of such polymers is extremely limited because monomers having nitrogen-containing groups can change coordination state with respect to the metal centers, thus decreasing the activity and enantioselectivity and even poisoning the catalyst completely. In this paper, we report our attempts to carry out the asymmetric copolymerization of meso-epoxide with highly reactive isocyanates. In particular, we found that biphenol-linked bimetallic Co(III) complexes with multiple chiral centers are very efficient in catalyzing this asymmetric copolymerization reaction, affording optically active polyurethanes with a completely alternating nature and a high enantioselectivity of up to 94 % ee. Crucially, we identified that the steric hindrance at the phenolate ortho position of the ligand strongly influences the catalytic activity and product enantioselectivity. In addition, density functional theory calculations revealed that the highly sterically bulky substituents change the mechanism from bimetallic to monometallic, and result in the unexpected inversion of the chiral induction direction. Moreover, the high stereoregularity of the produced polyurethanes enhances their thermal stability, and they can be selectively decomposed into oxazolidinones. This study offers a versatile methodology for the synthesis of chiral polymers containing nitrogen functionalities.

2.
Front Vet Sci ; 11: 1122904, 2024.
Article in English | MEDLINE | ID: mdl-38348107

ABSTRACT

To comprehensively provide insight into goose fatty liver formation, we performed an integrative analysis of the liver transcriptome, lipidome, and amino acid metabolome, as well as peripheral adipose tissue transcriptome analysis using samples collected from the overfed geese and normally fed geese. Transcriptome analysis showed that liver metabolism pathways were mainly enriched in glucolipid metabolism, amino acid metabolism, inflammation response, and cell cycle; peripheral adipose tissue and the liver cooperatively regulated liver lipid accumulation during overfeeding. Liver lipidome patterns obviously changed after overfeeding, and 157 different lipids were yielded. In the liver amino acid metabolome, the level of Lys increased after overfeeding. In summary, this is the first study describing goose fatty liver formation from an integrative analysis of transcriptome, lipidome, and amino acid metabolome, which will provide a whole new dimension to understanding the mechanism of goose fatty liver formation.

3.
Org Lett ; 26(2): 542-546, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38189289

ABSTRACT

Electrocarboxylation of the C(sp3)-O bond in 1,3-oxazolidin-2-ones with CO2 to achieve ß-amino acids is developed. The C-O bond in substrates can be selectively cleaved via the single electron transfer on the surface of a cathode or through a CO2• - intermediate under additive-free conditions. A great diversity of ß-amino acids can be obtained in a moderate to excellent yield and readily converted to various biologically active compounds.

4.
Poult Sci ; 102(3): 102428, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36586388

ABSTRACT

Our previous study described the mechanism of goose fatty liver formation from cell culture and transcriptome. However, how lipidome of goose liver response to overfeeding is unclear. In this study, we used the same batch of geese (control group and corn flour overfeeding group) to explore the lipidome changes and underlying metabolic mechanisms of goose fatty liver formation. Liquid chromatography-mass spectrometry (LC-MS) was provided to lipidome detection. Liver lipidomics profiles analysis was performed by principal component analysis (PCA), partial least squares-discriminant analysis (PLS-DA) and orthogonal partial least squares-discriminant analysis (OPLS-DA), different lipids were identified and annotated, and the enriched metabolic pathways were showed. The results of PCA, PLS-DA, and OPLS-DA displayed a clear separation and discrimination between control group and corn flour overfeeding group. Two hundred and fifty-one different lipids were yielded, which were involved in triglyceride (TG), diglyceride (DG), phosphatidic acids (PA), phosphatidylinositols (PI), phosphatidylethanolamines (PE), phosphatidylcholines (PC), lyso-phosphatidylcholines (LPC), monogalactosylmonoacylglycerol (MGMG), sphingolipids (SM), ceramides (Cer), and hexaglycosylceramides (Hex1Cer). Different lipids were enriched in glycerophospholipid metabolism, glycerolipid metabolism, phosphatidylinositol signaling system, inositol phosphate metabolism, glycosylphosphatidylinositol (GPI)-anchor biosynthesis and sphingolipid metabolism. In conclusion, this is the first report describing the goose fatty liver formation from lipidomics, this study might provide some insights into the underlying glucolipid metabolism disorders in the process of fatty liver formation.


Subject(s)
Fatty Liver , Geese , Animals , Geese/metabolism , Lipidomics , Chickens/metabolism , Fatty Liver/veterinary , Fatty Liver/metabolism , Triglycerides/metabolism , Phosphatidylcholines
5.
Poult Sci ; 101(11): 102149, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36209604

ABSTRACT

Previous research in our lab showed that 10% glucose, 10% fructose, and 10% sucrose can induce lipid deposition in goose fatty liver formation process more efficiently. However, whether the overfeeding diet supplement with sugar can affect the meat quality is unclear. The aim of this research was to estimate the meat quality of geese overfed with overfeeding diet adding with different types of sugar. The results indicated there were no significant differences in the diameter of muscle fiber, the muscle fiber density, pH0, pH24, the meat color, the cooking loss, the drip loss, the shear force and the dry matter in breast muscle and thigh muscle between corn flour groups and three sugars groups (P > 0.05). The crude fat content of breast muscle in fructose group was significantly higher than that in sucrose group (P < 0.05); the inosinic acid content of leg muscle in fructose group was significantly higher than that in the sucrose group (P < 0.05); the ratios of essential amino acids to total amino acids (EAA/TAA) in the breast muscle of maize flour group, fructose group, sucrose group and glucose group were 42%, 35%, 32% or 34%;57%, 64%, 64%, and 62%, respectively; the ratios of essential amino acids to total amino acids in leg muscle of maize flour group, fructose group, sucrose group and glucose group were 31%, 33%, 35%, and 34%, respectively. The contents of C16:1 and C18:1 n-9c in breast muscle in fructose group were significantly higher than that in sucrose group (P < 0.05). Compared with maize flour group, the contents of C18:0 and C20:0 were lower in leg muscle of sugar group (P < 0.05). Compared with the maize flour group, the activities of hydrogen peroxide (H2O2) and glutathione peroxidase (GSH-PX) in breast muscle were higher than those of sucrose group (P < 0.05), the total antioxidant capacity (T-AOC) levels in breast muscle was higher than that of fructose group and sucrose group (P < 0.05). Cluster analysis and principal component analysis (PCA) showed that there was no difference in meat quality between maize flour and sugar group. In conclusion, the overfeeding with maize flour supplement with 10% sugar had no evident influence on the meat quality.


Subject(s)
Hydrogen Peroxide , Sugars , Animals , Chickens , Meat/analysis , Geese/physiology , Fructose , Glucose , Amino Acids/analysis , Amino Acids, Essential , Sucrose
6.
Poult Sci ; 101(4): 101729, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35172237

ABSTRACT

Early research in our lab indicated that the effect of glucose, fructose and sucrose on the levels of triacylglycerol, and inflammatory factor was significantly different, and it is speculated that the regulatory mechanism of lipid deposition by different type of sugar in the liver is different. In order to explore lipid deposition difference mediated by different types of sugar (glucose, fructose, and sucrose) in goose fatty liver formation, this experiment was performed from cell culture, overfeeding experiment, and transcriptome analysis at 3 levels. Cell culture experiment results indicated that the levels of intracellular triglyceride, total cholesterol, and lipid content of fructose and sucrose treatment were significantly higher than those of glucose treatment (P < 0.05). In slaughter performance, the liver weight, the ratio of liver weight to body weight, feed conversion ratio (liver weight/feed consumption) were better in sucrose overfeeding group (P < 0.05). In addition, the liver of the sucrose overfeeding group contained a lot of unsaturated fatty acids, especially (n-3) polyunsaturated fatty acids (P < 0.05). Transcriptome analysis shown that the peroxisome proliferators-activated receptor (PPAR) signaling pathway is highly enriched in the fructose and sucrose overfeeding groups; cell cycle, and DNA replication pathways were highly enriched in the glucose overfeeding group. In conclusion, due to the decrease of lipids outward transportation and the anti-inflammation of unsaturated fatty acids, fructose, and sucrose have better ability to induce steatosis in goose fatty liver formation.


Subject(s)
Fatty Liver , Geese , Animals , Chickens/metabolism , Fatty Liver/metabolism , Fatty Liver/veterinary , Fructose , Geese/metabolism , Glucose/metabolism , Lipid Metabolism , Liver/metabolism , Sucrose/pharmacology , Sugars , Triglycerides/metabolism
7.
Front Nutr ; 9: 1052600, 2022.
Article in English | MEDLINE | ID: mdl-36704791

ABSTRACT

To further explore the fructose pro-steatosis mechanism, we performed an integrative analysis of liver transcriptome and lipidome as well as peripheral adipose tissues transcriptome analysis using samples collected from geese overfed with maize flour (control group) and geese overfed with maize flour supplemented with 10% fructose (treatment group). Overfeeding period of the treatment group was significantly shorter than that of the control group (p < 0.05). Dietary supplementation with 10% fructose induced more severe steatosis in goose liver. Compared with the control group, the treatment group had lower in ceramide levels (p < 0.05). The key differentially expressed genes (DEGs) (control group vs. treatment group) involved in liver fatty acid biosynthesis and steroid biosynthesis were downregulated. The conjoint analysis between DEGs and different lipids showed that fatty acid biosynthesis and steroid biosynthesis were the highest impact score pathways. In conclusion, fructose expedites goose liver lipid accumulation maximization during overfeeding.

8.
J Colloid Interface Sci ; 554: 220-228, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31301522

ABSTRACT

The electrochemical performance of ZnS-based anode materials for Li-ion storage is far from satisfactory due to the incomplete protection of carbon against the volume change. To address this issue, we synthesized a pitaya-like carbon-coated ZnS/carbon nanosphere with rich mesopores (denoted as ZnS/C@C) that can be a promising anode material for Li-ion storage. ZnS/C@C were synthetized via a facile hydrothermal method followed by a chemical vapor deposition process. In this novel hierarchical architecture, the internal carbon framework with mesoporous structure acted as a cushion matrix, effectively preventing ZnS from fracturing and agglomerating during the repeatedly cycling. The outer carbon-coating layer with a thickness of ∼10 nm as a buffer cage accommodated the large strain caused by the volume change. Meanwhile, both the inner carbon framework and the outer carbon-coating layer provided ZnS/C@C with abundant electrical pathways that boosted the reaction kinetics efficiently. The porous structure allowed the infiltration of electrolyte and decreased the transport length of Li ions. Merited by the optimized structure, the ZnS/C@C anodes showed exceptional rate capability (751 mAh g-1 at 1000 mA g-1) and cycling stability (659 mAh g-1 at 1000 mA g-1 over 1200 cycles). An ultrahigh reversible capacity of 949.6 mAh g-1 at 100 mA g-1 was achieved.

9.
J Colloid Interface Sci ; 512: 826-833, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-29121610

ABSTRACT

MoS2/reduced graphene oxide composites (MoS2/rGO) were successfully prepared by a designed tris(hydroxymethyl)methyl aminomethane (named THAM)-assisted hydrothermal method, which involves the modification of THAM on the surfaces of graphene oxide via hydrogen bonds and then the adsorption of MoO42- on the decorated surfaces due to the electrostatic attraction. The three-dimensional framework of interconnected rGO nanosheets provides good electronic conductivity and facile strain release during the electrochemical reaction, thus enhancing the overall performance of the MoS2-based electrode. Herein, the composite delivers high specific capacity, excellent cycling stability and rate performance for lithium- and sodium- ions batteries (LIBs and SIBs). The MoS2/rGO anode exhibits capacities of 880 mAh g-1 at 1 A g-1 after 200 cycles and 396 mAh g-1 even at 2 A g-1 after 2000 cycles for LIBs. As to SIBs, the reversible capacities of 485 mAh g-1 and 339 mAh g-1 can be retained at 0.1 A g-1 after 60 cycles and 0.5 A g-1 after 300 cycles, respectively. Our results demonstrate that the MoS2/rGO anode is one of the attractive anodes for LIBs and SIBs. Furthermore, the facile method can be extended to biosensing, catalytic, and biomedical applications.

10.
ACS Appl Mater Interfaces ; 9(41): 35880-35887, 2017 Oct 18.
Article in English | MEDLINE | ID: mdl-28948774

ABSTRACT

Tin disulfide is considered to be a promising anode material for Li ion batteries because of its high theoretical capacity as well as its natural abundance of sulfur and tin. Practical implementation of tin disulfide is, however, strongly hindered by inferior rate performance and poor cycling stability of unoptimized material. In this work, carbon-encapsulated tin disulfide nanoplates with a (101) plane orientation are prepared via a facile hydrothermal method, using polyethylene glycol as a surfactant to guide the crystal growth orientation, followed by a low-temperature carbon-coating process. Fast lithium ion diffusion channels are abundant and well-exposed on the surface of such obtained tin disulfide nanoplates, while the designed microstructure allows the effective decrease of the Li ion diffusion length in the electrode material. In addition, the outer carbon layer enhances the microscopic electrical conductivity and buffers the volumetric changes of the active particles during cycling. The optimized, carbon coated tin disulfide (101) nanoplates deliver a very high reversible capacity (960 mAh g-1 at a current density of 0.1 A g-1), superior rate capability (796 mAh g-1 at a current density as high as 2 A g-1), and an excellent cycling stability of 0.5 A g-1 for 300 cycles, with only 0.05% capacity decay per cycle.

11.
ACS Nano ; 10(9): 8526-35, 2016 09 27.
Article in English | MEDLINE | ID: mdl-27556425

ABSTRACT

A designed nanostructure with MoS2 nanosheets (NSs) perpendicularly grown on graphene sheets (MoS2/G) is achieved by a facile and scalable hydrothermal method, which involves adsorption of Mo7O24(6-) on a graphene oxide (GO) surface, due to the electrostatic attraction, followed by in situ growth of MoS2. These results give an explicit proof that the presence of oxygen-containing groups and pH of the solution are crucial factors enabling formation of a lamellar structure with MoS2 NSs uniformly decorated on graphene sheets. The direct coupling of edge Mo of MoS2 with the oxygen from functional groups on GO (C-O-Mo bond) is proposed. The interfacial interaction of the C-O-Mo bonds can enhance electron transport rate and structural stability of the MoS2/G electrode, which is beneficial for the improvement of rate performance and long cycle life. The graphene sheets improve the electrical conductivity of the composite and, at the same time, act not only as a substrate to disperse active MoS2 NSs homogeneously but also as a buffer to accommodate the volume changes during cycling. As an anode material for lithium-ion batteries, the manufactured MoS2/G electrode manifests a stable cycling performance (1077 mAh g(-1) at 100 mA g(-1) after 150 cycles), excellent rate capability, and a long cycle life (907 mAh g(-1) at 1000 mA g(-1) after 400 cycles).

SELECTION OF CITATIONS
SEARCH DETAIL
...