Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Prot ; 84(12): 2163-2173, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34410411

ABSTRACT

ABSTRACT: Fresh produce continues to be the main source of foodborne illness outbreaks in the United States, implicating bacterial pathogens such as Escherichia coli O157:H7 (EHEC). The efficacy of nanoemulsified carvacrol (NCR) as a washing treatment in reducing EHEC on fresh produce was investigated. Fresh baby spinach, romaine lettuce, and iceberg lettuce leaves (2.5-cm-diameter cores) were spot inoculated with a five-strain cocktail of nalidixic acid-resistant EHEC at ∼6 log CFU/cm2. After air drying for 1 h, 20 pieces of each inoculated produce leaf were immersed in water-based treatment solutions (200 mL per group), including water alone, 25 or 50 ppm of free chlorine, and 0.25 or 0.75% NCR for 2 min. Inoculated produce leaves without any treatment served as baseline. Produce leaves were stored at 10°C, and surviving EHEC populations were enumerated on days 0, 2, 7, and 14. The viability of EHEC following NCR treatments on the fresh produce was visualized under a fluorescence microscope. NCR treatment at 0.75% immediately reduced EHEC populations on iceberg lettuce by 1.3 log CFU/cm2 as compared with the produce treated with water alone (P < 0.05). Antimicrobial activity of NCR against EHEC was comparable to chlorine treatments on day 0 for all produce (P > 0.05). After 14 days of storage at 10°C, populations of EHEC on 0.75% NCR-treated romaine lettuce were reduced by 2.3 log CFU/cm2 compared with the recovery from 50 ppm of chlorine-treated samples (P < 0.05). Microscopic images revealed that EHEC cells were observed to be clustered on the baseline samples, indicating the development of cell aggregation, compared with the scattered cells seen on NCR-treated leaf surfaces. Treatments with NCR did not significantly affect the color of the fresh produce leaves during 14 days of storage at 10°C. Results of this study support the potential use of NCR as a water-soluble natural antimicrobial wash treatment for controlling EHEC on fresh produce.


Subject(s)
Disinfectants , Escherichia coli O157 , Chlorine/pharmacology , Colony Count, Microbial , Cymenes , Food Contamination/analysis , Food Handling , Food Microbiology , Lactuca , Spinacia oleracea
2.
J Food Prot ; 84(4): 695-703, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33270875

ABSTRACT

ABSTRACT: Fresh and fresh-cut tomatoes are high in phytonutrients. However, illness outbreaks associated with contaminated tomatoes have significantly impacted public health and the economic well-being of the tomato industry. Scientific information is needed to develop an effective, practical food safety standard to reduce pathogen contamination. The aim of this study was to assess factors impacting the deterioration of the quality of tomato wash water and the proliferation of indigenous microorganisms during a simulated dump tank washing process. Freshly harvested grape tomatoes were sorted into four groups: prime, defective, underripe, and nontomato debris. Tomatoes with leaf or stem harvest debris, combined or separate, were washed in tap water with or without free chlorine. Water samples were analyzed for total dissolved solids, turbidity, chemical oxygen demand, and chlorine demand. Microbial populations in water and on tomatoes as impacted by chlorine concentration and water filtration (300 µm) were also quantified. Field debris and defective tomatoes were the major contributors to microbial populations in wash water. Field debris, although accounting for <1% of the total weight of harvested material, contributed 37.84% of total dissolved solids, 46.15% of turbidity, 48.77% of chemical oxygen demand, and 50.55% of chlorine demand in the wash water. Water quality deterioration was proportional to the cumulative quantity of tomatoes and debris washed, and free chlorine at ≥5 mg/L significantly reduced the Enterobacteriaceae, aerobic mesophilic bacteria, and yeast and mold populations. These results highlight the importance of minimizing field debris and defective fruits in harvested grape tomatoes to reduce the microbial load and prevent deterioration of wash water quality. This information will be useful for the development of data-driven harvesting and packinghouse food safety practices for grape tomatoes.


Subject(s)
Disinfectants , Solanum lycopersicum , Vitis , Chlorine , Colony Count, Microbial , Food Contamination/analysis , Food Handling , Food Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...