Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biometals ; 35(6): 1359-1370, 2022 12.
Article in English | MEDLINE | ID: mdl-36261677

ABSTRACT

Selenium (Se) plays an essential role in the growth of fish and performs its physiological functions mainly through incorporation into selenoproteins. Our previous studies suggested that the selenoprotein W gene (selenow) is sensitive to changes in dietary Se in rainbow trout. However, the molecular characterization and tissue expression pattern of selenow are still unknown. Here, we revealed the molecular characterization, the tissue expression pattern of rainbow trout selenow and analyzed its response to dietary Se. The open reading frame (ORF) of the selenow gene was composed of 393 base pairs (bp) and encodes a 130-amino-acid protein. The 3' untranslated region (UTR) was 372 bp with a selenocysteine insertion sequence (SECIS) element. Remarkably, the rainbow trout selenow gene sequence was longer than those reported for mammals and most other fish. A ß1-α1-ß2-ß3-ß4-α2 pattern made up the secondary structure of SELENOW. Furthermore, multiple sequence alignment revealed that rainbow trout SELENOW showed a high level of identity with SELENOW from Salmo salar. In addition, the selenow gene was ubiquitously distributed in 13 tissues with various abundances and was predominantly expressed in muscle and brain. Interestingly, dietary Se significantly increased selenow mRNA expression in muscle. Our results highlight the vital role of selenow in rainbow trout muscle response to dietary Se levels and provide a theoretical basis for studies of selenow.


Subject(s)
Oncorhynchus mykiss , Selenium , Animals , Oncorhynchus mykiss/genetics , Oncorhynchus mykiss/metabolism , Selenoprotein W/genetics , Selenoprotein W/metabolism , Selenium/metabolism , Selenocysteine/genetics , Selenocysteine/metabolism , Selenoproteins/genetics , Selenoproteins/metabolism , Cloning, Molecular , Mammals/genetics
2.
Biol Trace Elem Res ; 200(3): 1361-1375, 2022 Mar.
Article in English | MEDLINE | ID: mdl-33928590

ABSTRACT

Selenium (Se) deficiency and excess can lead to protein degradation in fish. However, the underlying mechanisms remain unclear. Ubiquitin proteasome system (UPS) is the main pathway of muscle proteolysis. This study aimed to investigate the effect and molecular mechanism of dietary Se on ubiquitin-mediated muscle protein degradation in rainbow trout (Oncorhynchus mykiss). The fish were fed with the Se-deficient diet (0 mg/kg, DSe), Se-adequate diet (4 mg/kg, ASe), and Se-excessive diet (16 mg/kg, ESe), respectively. After a 10-week feeding trial, the growth performance, body composition, antioxidant enzyme activities, and UPS-related gene and protein expressions were detected. Results indicated that DSe and ESe diets significantly decreased the weight gain rate, specific growth rate, feed efficiency, and muscle crude protein content compared with ASe diet. The histological analysis showed that the mean diameter of muscle fibers was significantly decreased in DSe and ESe groups. And DSe and ESe diets significantly increased the contents of malondialdehyde and nitric oxide, but reduced the glutathione peroxidase activity. Additionally, the abundance of muscle ubiquitinated proteins and the expression levels of MuRF1 and Atrogin-1 were significantly increased in DSe and ESe groups. Compared to ASe diet, DSe and ESe diets significantly decreased the phosphorylation level of Akt Ser473 and the ratio of p-FoxO3a/FoxO3a, but significantly increased the phosphorylation level of IκBα and upregulated the expressions of TNF-α, IL-8, and NF-κB. Overall, this study indicated that dietary Se deficiency and excess accelerated the ubiquitin-mediated muscle protein degradation through regulating Akt/FoxO3a and NF-κB signaling pathways in rainbow trout.


Subject(s)
Oncorhynchus mykiss , Selenium , Animal Feed/analysis , Animals , Diet , Muscles/metabolism , NF-kappa B , Oncorhynchus mykiss/metabolism , Proteolysis , Proto-Oncogene Proteins c-akt , Selenium/pharmacology , Signal Transduction , Ubiquitin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...