Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 17(23): 23317-23330, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37982733

ABSTRACT

Antivirals are indispensable tools that can be targeted at viral domains directly or at cellular domains indirectly to obstruct viral infections and reduce pathogenicity. Despite their transformative use in healthcare, antivirals have been clinically approved to treat only 10 of the more than 200 known pathogenic human viruses. Additionally, many virus functions are intimately coupled with host cellular processes, which presents challenges in antiviral development due to the limited number of clear targets per virus, necessitating extensive insight into these molecular processes. Compounding this challenge, many viral pathogens have evolved to evade effective antivirals. We hypothesize that a viral attachment blocking chimera (VirABloC) composed of a viral binder and a bulky scaffold that sterically blocks interactions between a viral particle and a host cell may be suitable for the development of antivirals that are agnostic to the extravirion epitope that is being bound. We test this hypothesis by modifying a nanobody that specifically recognizes a nonessential epitope presented on the extravirion surface of pseudorabies virus strain 486 with a 3-dimensional wireframe DNA origami structure ∼100 nm in diameter. The nanobody switches from having no inhibitory properties to 4.2 ± 0.9 nM IC50 when conjugated with the DNA origami scaffold. Mechanistic studies support that inhibition is mediated by the noncovalent attachment of the DNA origami scaffold to the virus particle, which obstructs the attachment of the viruses onto host cells. These results support the potential of VirABloC as a generalizable approach to developing antivirals.


Subject(s)
Herpesvirus 1, Suid , Viruses , Animals , Humans , Herpesvirus 1, Suid/genetics , Virus Attachment , DNA , Epitopes , Antiviral Agents
2.
J Cell Sci ; 136(17)2023 09 01.
Article in English | MEDLINE | ID: mdl-37675776

ABSTRACT

Motility is essential for apicomplexan parasites to infect their hosts. In a three-dimensional (3D) environment, the apicomplexan parasite Toxoplasma gondii moves along a helical path. The cortical microtubules, which are ultra-stable and spirally arranged, have been considered to be a structure that guides the long-distance movement of the parasite. Here, we address the role of the cortical microtubules in parasite motility, invasion and egress by utilizing a previously generated mutant (dubbed 'TKO') in which these microtubules are destabilized in mature parasites. We found that the cortical microtubules in ∼80% of the non-dividing (i.e. daughter-free) TKO parasites are much shorter than normal. The extent of depolymerization was further exacerbated upon commencement of daughter formation or cold treatment, but parasite replication was not affected. In a 3D Matrigel matrix, the TKO mutant moved directionally over long distances, but along trajectories that were significantly more linear (i.e. less helical) than those of wild-type parasites. Interestingly, this change in trajectory did not impact either movement speed in the matrix or the speed and behavior of the parasite during entry into and egress from the host cell.


Subject(s)
Parasites , Toxoplasma , Animals , Toxoplasma/genetics , Microtubules , Movement
3.
bioRxiv ; 2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37162829

ABSTRACT

Motility is essential for apicomplexan parasites to infect their hosts. In a three-dimensional (3-D) environment, the apicomplexan parasite Toxoplasma gondii moves along a helical path. The cortical microtubules, which are ultra-stable and spirally arranged, have been considered to be a structure that guides the long-distance movement of the parasite. Here we address the role of the cortical microtubules in parasite motility, invasion, and egress by utilizing a previously generated mutant (dubbed "TKO") in which these microtubules are destabilized in mature parasites. We found that the cortical microtubules in ~ 80% of the non-dividing (i.e. daughter-free) TKO parasites are much shorter than normal. The extent of depolymerization is further exacerbated upon commencement of daughter formation or cold treatment, but parasite replication is not affected. In a 3-D Matrigel matrix, the TKO mutant moves directionally over long distances, but along trajectories significantly more linear (i.e. less helical) than those of wild-type parasites. Interestingly, this change in trajectory does not impact either movement speed in the matrix or the speed and behavior of the parasite's entry into and egress from the host cell.

4.
PLoS Pathog ; 18(8): e1010776, 2022 08.
Article in English | MEDLINE | ID: mdl-35994509

ABSTRACT

The phylum Apicomplexa includes thousands of species of unicellular parasites that cause a wide range of human and animal diseases such as malaria and toxoplasmosis. To infect, the parasite must first initiate active movement to disseminate through tissue and invade into a host cell, and then cease moving once inside. The parasite moves by gliding on a surface, propelled by an internal cortical actomyosin-based motility apparatus. One of the most effective invaders in Apicomplexa is Toxoplasma gondii, which can infect any nucleated cell and any warm-blooded animal. During invasion, the parasite first makes contact with the host cell "head-on" with the apical complex, which features an elaborate cytoskeletal apparatus and associated structures. Here we report the identification and characterization of a new component of the apical complex, Preconoidal region protein 2 (Pcr2). Pcr2 knockout parasites replicate normally, but they are severely diminished in their capacity for host tissue destruction due to significantly impaired invasion and egress, two vital steps in the lytic cycle. When stimulated for calcium-induced egress, Pcr2 knockout parasites become active, and secrete effectors to lyse the host cell. Calcium-induced secretion of the major adhesin, MIC2, also appears to be normal. However, the movement of the Pcr2 knockout parasite is spasmodic, which drastically compromises egress. In addition to faulty motility, the ability of the Pcr2 knockout parasite to assemble the moving junction is impaired. Both defects likely contribute to the poor efficiency of invasion. Interestingly, actomyosin activity, as indicated by the motion of mEmerald tagged actin chromobody, appears to be largely unperturbed by the loss of Pcr2, raising the possibility that Pcr2 may act downstream of or in parallel with the actomyosin machinery.


Subject(s)
Parasites , Toxoplasma , Actomyosin/metabolism , Animals , Calcium/metabolism , Host-Parasite Interactions , Humans , Parasites/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Toxoplasma/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...