Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Integr Environ Assess Manag ; 11(3): 348-54, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25655086

ABSTRACT

This brief communication reports on the main findings and recommendations from the 2014 Science Forum organized by CropLife America. The aim of the Forum was to gain a better understanding of the current status of population models and how they could be used in ecological risk assessments for threatened and endangered species potentially exposed to pesticides in the United States. The Forum panelists' recommendations are intended to assist the relevant government agencies with implementation of population modeling in future endangered species risk assessments for pesticides. The Forum included keynote presentations that provided an overview of current practices, highlighted the findings of a recent National Academy of Sciences report and its implications, reviewed the main categories of existing population models and the types of risk expressions that can be produced as model outputs, and provided examples of how population models are currently being used in different legislative contexts. The panel concluded that models developed for listed species assessments should provide quantitative risk estimates, incorporate realistic variability in environmental and demographic factors, integrate complex patterns of exposure and effects, and use baseline conditions that include present factors that have caused the species to be listed (e.g., habitat loss, invasive species) or have resulted in positive management action. Furthermore, the panel advocates for the formation of a multipartite advisory committee to provide best available knowledge and guidance related to model implementation and use, to address such needs as more systematic collection, digitization, and dissemination of data for listed species; consideration of the newest developments in good modeling practice; comprehensive review of existing population models and their applicability for listed species assessments; and development of case studies using a few well-tested models for particular species to demonstrate proof of concept. To advance our common goals, the panel recommends the following as important areas for further research and development: quantitative analysis of the causes of species listings to guide model development; systematic assessment of the relative role of toxicity versus other factors in driving pesticide risk; additional study of how interactions between density dependence and pesticides influence risk; and development of pragmatic approaches to assessing indirect effects of pesticides on listed species.


Subject(s)
Environmental Exposure/statistics & numerical data , Environmental Pollutants/analysis , Pesticides , Risk Assessment/methods , Agriculture/statistics & numerical data , Models, Theoretical , Population Growth , United States
2.
Ecol Appl ; 17(8): 2175-83, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18213961

ABSTRACT

Structured population models are increasingly used in decision making, but typically have many entries that are unknown or highly uncertain. We present an approach for the systematic analysis of the effect of uncertainties on long-term population growth or decay. Many decisions for threatened and endangered species are made with poor or no information. We can still make decisions under these circumstances in a manner that is highly defensible, even without making assumptions about the distribution of uncertainty, or limiting ourselves to discussions of single, infinitesimally small changes in the parameters. Suppose that the model (determined by the data) for the population in question predicts long-term growth. Our goal is to determine how uncertain the data can be before the model loses this property. Some uncertainties will maintain long-term growth, and some will lead to long-term decay. The uncertainties are typically structured, and can be described by several parameters. We show how to determine which parameters maintain long-term growth. We illustrate the advantages of the method by applying it to a Peregrine Falcon population. The U.S. Fish and Wildlife Service recently decided to allow minimal harvesting of Peregrine Falcons after their recent removal from the Endangered Species List. Based on published demographic rates, we find that an asymptotic growth rate lambda > 1 is guaranteed with 5% harvest rate up to 3% error in adult survival if no two-year-olds breed, and up to 11% error if all two-year-olds breed. If a population growth rate of 3% or greater is desired, the acceptable error in adult survival decreases to between 1% and 6% depending of the proportion of two-year-olds that breed. These results clearly show the interactions between uncertainties in different parameters, and suggest that a harvest decision at this stage may be premature without solid data on adult survival and the frequency of breeding by young adults.


Subject(s)
Ecosystem , Falconiformes/physiology , Models, Biological , Animals , Conservation of Natural Resources , Decision Making , Population Dynamics , Time Factors , Uncertainty
3.
Am Nat ; 158(5): 505-18, 2001 Nov.
Article in English | MEDLINE | ID: mdl-18707305

ABSTRACT

Resources can be aggregated both within and between patches. In this article, we examine how aggregation at these different scales influences the behavior and performance of foragers. We developed an optimal foraging model of the foraging behavior of the parasitoid wasp Cotesia rubecula parasitizing the larvae of the cabbage butterfly Pieris rapae. The optimal behavior was found using stochastic dynamic programming. The most interesting and novel result is that the effect of resource aggregation within and between patches depends on the degree of aggregation both within and between patches as well as on the local host density in the occupied patch, but lifetime reproductive success depends only on aggregation within patches. Our findings have profound implications for the way in which we measure heterogeneity at different scales and model the response of organisms to spatial heterogeneity.

4.
J Theor Biol ; 202(4): 257-72, 2000 Feb 21.
Article in English | MEDLINE | ID: mdl-10666359

ABSTRACT

Variation in mean food availability, and in the variance around the mean, affects the growth rate during development. Previous theoretical work on the influence of environmental quality or growth rates on the phenotypic traits age and size at maturation assumed that there is no variation in growth rate or food availability within a generation. We develop a stochastic dynamic programming (SDP) model of the foraging behaviour of aphidophagous syrphids, and use this model to predict when syrphids should pupate (mature) when average food availability changes, or varies stochastically, during development. The optimal strategy takes into account not only the availability of food, but also the timing of its availability. Food availability, when small, influences developmental time, but not weight at pupation. Food availability, when large, influences weight at pupation, but not developmental time. When the food supply is low, the optimal strategy adjusts the size at pupation downwards for stochastic as opposed to deterministic availability of food. The conclusions reinforce the need for life-history studies to consider state dependence and short-term variability in growth rates.


Subject(s)
Aphids/growth & development , Food Supply , Animals , Biometry , Models, Biological , Stochastic Processes
SELECTION OF CITATIONS
SEARCH DETAIL
...