Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 103(2-1): 022614, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33736086

ABSTRACT

We perform small angle neutron scattering on ultralow-crosslinked microgels and find that while in certain conditions both the particle size and the characteristic internal length scale change in unison, in other instances this is not the case. We show that nonuniform deswelling depends not only on particle size, but also on the particular way the various contributions to the free energy combine to result in a given size. Only when polymer-solvent demixing strongly competes with ionic or electrostatic effects do we observe nonuniform behavior, reflecting internal microphase separation. The results do not appreciably depend on particle number density; even in concentrated suspensions, we find that at relatively low temperature, where demixing is not very strong, the deswelling behavior is uniform, and that only at sufficiently high temperature, where demixing is very strong, does the microgel structure change akin to internal microphase separation.

2.
Phys Rev E ; 102(1-1): 012602, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32794916

ABSTRACT

Individual fire ants are inherently active as they are living organisms that convert stored chemical energy into motion. However, each individual ant is not equally disposed to motion at any given time. In an active aggregation, most of the constituent ants are active, and vice versa for an inactive aggregation. Here we look at the role activity plays on the nonlinear mechanical behavior of the aggregation through large amplitude oscillatory shear measurements. We find that the level of viscous nonlinearity can be decreased by increasing the activity or by increasing the volume fraction. In contrast, the level of elastic nonlinearity is not affected by either activity or volume fraction. We interpret this in terms of a transient network with equal rates of linking and unlinking but with varying number of linking and unlinking events.

3.
Soft Matter ; 16(29): 6725-6732, 2020 Aug 07.
Article in English | MEDLINE | ID: mdl-32555866

ABSTRACT

Aqueous foams are ubiquitous; they appear in products and processes that span the cosmetics, food, and energy industries. The versatile applicability of foams comes as a result of their intrinsic viscous and elastic properties; for example, foams are exploited as drilling fluids in enhanced oil recovery for their high viscosity. Recently, so-called capillary foams were discovered: a class of foams that have excellent stability under static conditions and whose flow properties have so far remained unexplored. The unique architecture of these foams, containing oil-coated bubbles and a gelled network of oil-bridged particles, is expected to affect foam rheology. In this work, we report the first set of rheological data on capillary foams. We study the viscoelastic properties of capillary foams by conducting oscillatory and steady shear tests. We compare our results on the rheological properties of capillary foams to those reported for other aqueous foams. We find that capillary foams, which have low gas volume fractions, exhibit long lasting rheological stability as well as a yielding behavior that is reminiscent of surfactant foams with high gas volume fractions.

4.
Phys Rev Lett ; 124(12): 128002, 2020 Mar 27.
Article in English | MEDLINE | ID: mdl-32281839

ABSTRACT

When grains are added to a cylinder, the weight at the bottom is smaller than the total weight of the column, which is partially supported by the lateral walls through frictional interactions with the grains. This is known as the Janssen effect. Via a combined experimental and numerical investigation, here we demonstrate a reverse Jansen effect whereby the fraction of the weight supported by the base overcomes one. We characterize the dependence of this phenomenon on the various control parameters involved, rationalize the physical process causing the emergence of the compressional frictional forces responsible for the anomaly, and introduce a model to reproduce our findings. Contrary to prior assumptions, our results demonstrate that the constitutive relation on a material element can depend on the applied stress.

5.
ACS Appl Mater Interfaces ; 11(31): 27906-27912, 2019 Aug 07.
Article in English | MEDLINE | ID: mdl-31298521

ABSTRACT

Solid polymer electrolytes (SPEs) have the potential to enhance the safety and energy density of lithium batteries. However, poor interfacial contact between the lithium metal anode and SPE leads to high interfacial resistance and low specific capacity of the battery. In this work, we present a novel strategy to improve this solid-solid interface problem and maintain good interfacial contact during battery cycling by introducing an adaptive buffer layer (ABL) between the Li metal anode and SPE. The ABL consists of low molecular-weight polypropylene carbonate , poly(ethylene oxide) (PEO), and lithium salt. Rheological experiments indicate that ABL is viscoelastic and that it flows with a higher viscosity compared to PEO-only SPE. ABL also has higher ionic conductivity than PEO-only SPE. In the presence of ABL, the interface resistance of the Li/ABL/SPE/LiFePO4 battery only increased 20% after 150 cycles, whereas that of the battery without ABL increased by 117%. In addition, because ABL makes a good solid-solid interface contact between the Li metal anode and SPE, the battery with ABL delivered an initial discharge specific capacity of >110 mA·h/g, which is nearly twice that of the battery without ABL, which is 60 mA·h/g. Moreover, ABL is able to maintain electrode-electrolyte interfacial contact during battery cycling, which stabilizes the battery Coulombic efficiency.

6.
Phys Rev E ; 96(5-1): 052601, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29347661

ABSTRACT

Fire ant aggregations are active materials composed of individual constituents that are able to transform internal energy into work. We find using rheology and direct visualization that the aggregation undergoes activity cycles that affect the mechanical properties of the system. When the activity is high, the aggregation approximately equally stores and dissipates energy, it is more homogeneous, and exerts a high outward force. When the activity is low, the aggregation is predominantly elastic, it is more heterogeneous, and it exerts a small outward force. We rationalize our results using a simple kinetic model where the number of active ants within the aggregation is the essential quantity.


Subject(s)
Ants , Behavior, Animal , Models, Theoretical , Spatial Behavior , Viscoelastic Substances/chemistry , Animals , Biomimetic Materials/chemistry , Elasticity , Kinetics , Rheology , Torque
7.
Nat Mater ; 16(2): 230-235, 2017 02.
Article in English | MEDLINE | ID: mdl-27723740

ABSTRACT

Haemostasis occurs at sites of vascular injury, where flowing blood forms a clot, a dynamic and heterogeneous fibrin-based biomaterial. Paramount in the clot's capability to stem haemorrhage are its changing mechanical properties, the major drivers of which are the contractile forces exerted by platelets against the fibrin scaffold. However, how platelets transduce microenvironmental cues to mediate contraction and alter clot mechanics is unknown. This is clinically relevant, as overly softened and stiffened clots are associated with bleeding and thrombotic disorders. Here, we report a high-throughput hydrogel-based platelet-contraction cytometer that quantifies single-platelet contraction forces in different clot microenvironments. We also show that platelets, via the Rho/ROCK pathway, synergistically couple mechanical and biochemical inputs to mediate contraction. Moreover, highly contractile platelet subpopulations present in healthy controls are conspicuously absent in a subset of patients with undiagnosed bleeding disorders, and therefore may function as a clinical diagnostic biophysical biomarker.


Subject(s)
Blood Coagulation/physiology , Blood Flow Velocity/physiology , Blood Platelets/physiology , Flow Cytometry/methods , Mechanotransduction, Cellular/physiology , Platelet Activation/physiology , Platelet Adhesiveness/physiology , Cells, Cultured , Elastic Modulus/physiology , Hardness/physiology , Humans , Nanoparticles/chemistry
8.
Nat Mater ; 15(1): 54-9, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26501413

ABSTRACT

Fire ants link their bodies to form aggregations; these can adopt a variety of structures, they can drip and spread, or withstand applied loads. Here, by using oscillatory rheology, we show that fire ant aggregations are viscoelastic. We find that, at the lowest ant densities probed and in the linear regime, the elastic and viscous moduli are essentially identical over the spanned frequency range, which highlights the absence of a dominant mode of structural relaxation. As ant density increases, the elastic modulus rises, which we interpret by alluding to ant crowding and subsequent jamming. When deformed beyond the linear regime, the aggregation flows, exhibiting shear-thinning behaviour with a stress load that is comparable to the maximum load the aggregation can withstand before individual ants are torn apart. Our findings illustrate the rich, collective mechanical behaviour that can arise in aggregations of active, interacting building blocks.

SELECTION OF CITATIONS
SEARCH DETAIL
...