Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 148
Filter
1.
Cell Host Microbe ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38821063

ABSTRACT

Toxin-antitoxins (TAs) are prokaryotic two-gene systems composed of a toxin neutralized by an antitoxin. Toxin-antitoxin-chaperone (TAC) systems additionally include a SecB-like chaperone that stabilizes the antitoxin by recognizing its chaperone addiction (ChAD) element. TACs mediate antiphage defense, but the mechanisms of viral sensing and restriction are unexplored. We identify two Escherichia coli antiphage TAC systems containing host inhibition of growth (HigBA) and CmdTA TA modules, HigBAC and CmdTAC. HigBAC is triggered through recognition of the gpV major tail protein of phage λ. Chaperone HigC recognizes gpV and ChAD via analogous aromatic molecular patterns, with gpV outcompeting ChAD to trigger toxicity. For CmdTAC, the CmdT ADP-ribosyltransferase toxin modifies mRNA to halt protein synthesis and limit phage propagation. Finally, we establish the modularity of TACs by creating a hybrid broad-spectrum antiphage system combining the CmdTA TA warhead with a HigC chaperone phage sensor. Collectively, these findings reveal the potential of TAC systems in broad-spectrum antiphage defense.

2.
Nucleic Acids Res ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38811035

ABSTRACT

Ribosomes trapped on mRNAs during protein synthesis need to be rescued for the cell to survive. The most ubiquitous bacterial ribosome rescue pathway is trans-translation mediated by tmRNA and SmpB. Genetic inactivation of trans-translation can be lethal, unless ribosomes are rescued by ArfA or ArfB alternative rescue factors or the ribosome-associated quality control (RQC) system, which in Bacillus subtilis involves MutS2, RqcH, RqcP and Pth. Using transposon sequencing in a trans-translation-incompetent B. subtilis strain we identify a poorly characterized S4-domain-containing protein YlmH as a novel potential RQC factor. Cryo-EM structures reveal that YlmH binds peptidyl-tRNA-50S complexes in a position analogous to that of S4-domain-containing protein RqcP, and that, similarly to RqcP, YlmH can co-habit with RqcH. Consistently, we show that YlmH can assume the role of RqcP in RQC by facilitating the addition of poly-alanine tails to truncated nascent polypeptides. While in B. subtilis the function of YlmH is redundant with RqcP, our taxonomic analysis reveals that in multiple bacterial phyla RqcP is absent, while YlmH and RqcH are present, suggesting that in these species YlmH plays a central role in the RQC.

3.
Mol Microbiol ; 121(5): 984-1001, 2024 05.
Article in English | MEDLINE | ID: mdl-38494741

ABSTRACT

YbeX of Escherichia coli, a member of the CorC protein family, is encoded in the same operon with ribosome-associated proteins YbeY and YbeZ. Here, we report the involvement of YbeX in ribosomal metabolism. The ΔybeX cells accumulate distinct 16S rRNA degradation intermediates in the 30S particles and the 70S ribosomes. E. coli lacking ybeX has a lengthened lag phase upon outgrowth from the stationary phase. This growth phenotype is heterogeneous at the individual cell level and especially prominent under low extracellular magnesium levels. The ΔybeX strain is sensitive to elevated growth temperatures and to several ribosome-targeting antibiotics that have in common the ability to induce the cold shock response in E. coli. Although generally milder, the phenotypes of the ΔybeX mutant overlap with those caused by ybeY deletion. A genetic screen revealed partial compensation of the ΔybeX growth phenotype by the overexpression of YbeY. These findings indicate an interconnectedness among the ybeZYX operon genes, highlighting their roles in ribosomal assembly and/or degradation.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Operon , RNA, Ribosomal, 16S , Ribosomal Proteins , Ribosomes , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli/growth & development , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , RNA, Ribosomal, 16S/genetics , Ribosomes/metabolism , Operon/genetics , Ribosomal Proteins/metabolism , Ribosomal Proteins/genetics , Gene Expression Regulation, Bacterial , Anti-Bacterial Agents/pharmacology
4.
Sci Rep ; 14(1): 6883, 2024 03 22.
Article in English | MEDLINE | ID: mdl-38519558

ABSTRACT

We developed a reporter system based on simultaneous expression of two fluorescent proteins: GFP as a reporter of the capacity of protein synthesis and mutated mScarlet-I as a reporter of translational errors. Because of the unique stop codons or frameshift mutations introduced into the mScarlet-I gene, red fluorescence was produced only after a mistranslation event. These reporters allowed us to estimate mistranslation at a single cell level using either flow cytometry or fluorescence microscopy. We found that laboratory strains of Escherichia coli are more prone to mistranslation compared to the clinical isolates. As relevant for uropathogenic E. coli, growth in human urine elevated translational frameshifting compared to standard laboratory media, whereas different standard media had a small effect on translational fidelity. Antibiotic-induced mistranslation was studied by using amikacin (aminoglycoside family) and azithromycin (macrolide family). Bactericidal amikacin induced preferably stop-codon readthrough at a moderate level. Bacteriostatic azithromycin on the other hand induced both frameshifting and stop-codon readthrough at much higher level. Single cell analysis revealed that fluorescent reporter-protein signal can be lost due to leakage from a fraction of bacteria in the presence of antibiotics, demonstrating the complexity of the antimicrobial activity.


Subject(s)
Anti-Bacterial Agents , Frameshift Mutation , Humans , Anti-Bacterial Agents/pharmacology , Azithromycin/pharmacology , Amikacin , Escherichia coli/genetics , Codon, Terminator/genetics , Protein Biosynthesis
5.
Nature ; 626(8001): 1133-1140, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38326618

ABSTRACT

Protein synthesis is a major energy-consuming process of the cell that requires the controlled production1-3 and turnover4,5 of ribosomes. Although the past few years have seen major advances in our understanding of ribosome biogenesis, structural insight into the degradation of ribosomes has been lacking. Here we present native structures of two distinct small ribosomal 30S subunit degradation intermediates associated with the 3' to 5' exonuclease ribonuclease R (RNase R). The structures reveal that RNase R binds at first to the 30S platform to facilitate the degradation of the functionally important anti-Shine-Dalgarno sequence and the decoding-site helix 44. RNase R then encounters a roadblock when it reaches the neck region of the 30S subunit, and this is overcome by a major structural rearrangement of the 30S head, involving the loss of ribosomal proteins. RNase R parallels this movement and relocates to the decoding site by using its N-terminal helix-turn-helix domain as an anchor. In vitro degradation assays suggest that head rearrangement poses a major kinetic barrier for RNase R, but also indicate that the enzyme alone is sufficient for complete degradation of 30S subunits. Collectively, our results provide a mechanistic basis for the degradation of 30S mediated by RNase R, and reveal that RNase R targets orphaned 30S subunits using a dynamic mechanism involving an anchored switching of binding sites.


Subject(s)
Exoribonucleases , Ribosomal Proteins , Ribosomes , Exoribonucleases/metabolism , Ribosomal Proteins/metabolism , Ribosomes/chemistry , Ribosomes/metabolism , Kinetics , Binding Sites
6.
Antiviral Res ; 224: 105842, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38417531

ABSTRACT

Enteroviruses are a significant global health concern, causing a spectrum of diseases from the common cold to more severe conditions like hand-foot-and-mouth disease, meningitis, myocarditis, pancreatitis, and poliomyelitis. Current treatment options for these infections are limited, underscoring the urgent need for effective therapeutic strategies. To find better treatment option we analyzed toxicity and efficacy of 12 known broad-spectrum anti-enterovirals both individually and in combinations against different enteroviruses in vitro. We identified several novel, synergistic two-drug and three-drug combinations that demonstrated significant inhibition of enterovirus infections in vitro. Specifically, the triple-drug combination of pleconaril, rupintrivir, and remdesivir exhibited remarkable efficacy against echovirus (EV) 1, EV6, EV11, and coxsackievirus (CV) B5, in human lung epithelial A549 cells. This combination surpassed the effectiveness of single-agent or dual-drug treatments, as evidenced by its ability to protect A549 cells from EV1-induced cytotoxicity across seven passages. Additionally, this triple-drug cocktail showed potent antiviral activity against EV-A71 in human intestinal organoids. Thus, our findings highlight the therapeutic potential of the pleconaril-rupintrivir-remdesivir combination as a broad-spectrum treatment option against a range of enterovirus infections. The study also paves the way towards development of strategic antiviral drug combinations with virus family coverage and high-resistance barriers.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Enterovirus A, Human , Enterovirus Infections , Enterovirus , Isoxazoles , Oxadiazoles , Oxazoles , Phenylalanine/analogs & derivatives , Pyrrolidinones , Valine/analogs & derivatives , Animals , Humans , Enterovirus Infections/drug therapy , Enterovirus B, Human , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Drug Combinations
7.
Eur J Pharm Sci ; 192: 106648, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37992909

ABSTRACT

Conventional wound infection treatments neither actively promote wound healing nor address the growing problem of antibacterial resistance. Antimicrobial peptides (AMPs) are natural defense molecules, released from host cells, which may be rapidly bactericidal, modulate host-immune responses, and/or act as endogenous mediators for wound healing. However, their routine clinical use has hitherto been hindered due to their instability in the wound environment. Here we describe an electrospun carrier system for topical application of pleurocidin, demonstrating sufficient AMP release from matrices to kill wound-associated pathogens including Acinetobacter baumannii and Pseudomonas aeruginosa. Pleurocidin can be incorporated into polyvinyl alcohol (PVA) fiber matrices, using coaxial electrospinning, without major drug loss with a peptide content of 0.7% w/w predicted sufficient to kill most wound associated species. Pleurocidin retains its activity on release from the electrospun fiber matrix and completely inhibits growth of two strains of A. baumannii (AYE; ATCC 17978) and other ESKAPE pathogens. Inhibition of P. aeruginosa strains (PAO1; NCTC 13437) is, however, matrix weight per volume dependent, with only larger/thicker matrices maintaining complete inhibition. The resulting estimation of pleurocidin release from the matrix reveals high efficiency, facilitating a greater AMP potency. Wound matrices are often applied in parallel or sequentially with the use of standard wound care with biocides, therefore the presence and effect of biocides on pleurocidin potency was tested. It was revealed that combinations displayed additive or modestly synergistic effects depending on the biocide and pathogens which should be considered during the therapy. Taken together, we show that electrospun, pleurocidin-loaded wound matrices have potential to be investigated for wound infection treatment.


Subject(s)
Disinfectants , Wound Infection , Humans , Fish Proteins/pharmacology , Bacteria , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Disinfectants/pharmacology , Wound Infection/drug therapy
8.
Int J Infect Dis ; 137: 75-78, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37852599

ABSTRACT

Vaccinated convalescents do not develop severe COVID-19 after infection with new SARS-CoV-2 variants. We questioned how messenger RNA (mRNA) vaccination of convalescents provides protection from emerging virus variants. From the cohort of 71 convalescent plasma donors, we identified a patient who developed immune response to infection with SARS-CoV-2 variant of 20A clade and who subsequently received mRNA vaccine encoding spike (S) protein of strain of 19A clade. We showed that vaccination increased the production of immune cells and anti-S antibodies in the serum. Serum antibodies neutralized not only 19A and 20A, but also 20B, 20H, 21J, and 21K virus variants. One of the serum antibodies (100F8) completely neutralized 20A, 21J, and partially 21K strains. 100F8 was structurally similar to published Ab188 antibody, which recognized non-conserved epitope on the S protein. We proposed that 100F8 and other serum antibodies of the patient which recognized non- and conserved epitopes of the S protein, could have additive or synergistic effects to neutralize various virus variants. Thus, mRNA vaccination could be beneficial for convalescents because it boosts production of neutralizing antibodies with broad-spectrum activity.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/prevention & control , COVID-19 Serotherapy , Antibodies, Neutralizing , Vaccination , Epitopes , RNA, Messenger/genetics , Antibodies, Viral
9.
Molecules ; 28(18)2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37764271

ABSTRACT

While the prudent and reasonable use of veterinary antimicrobial agents in food-producing animals is necessary, researchers over the decades have shown that these antimicrobial agents can spread into the environment through livestock manure and wastewater. The analysis of the occurrence of antimicrobial compounds in soil samples is of a great importance to determine potential impacts on human and animal health and the environment. In this study, an affordable, rugged and simple analytical method has been developed for the determination of twenty-nine antimicrobial compounds from five different classes (tetracyclines, fluoro(quinolones), macrolides, sulfonamides and diaminopirimidines). Liquid-liquid extraction (LLE) with extract filtration combined with ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) was the best strategy for the simultaneous determination of all analytes. The developed method was validated according to the Commission Implementing Regulation (EU) 2021/808. The limit of detections (LODs) ranged from 0.5 to 2.0 µg/kg, while the limit of quantitation (LOQ) was established at 1.0 to 20.0 µg/kg. The developed method was successfully applied for the determination of antimicrobial residues in one hundred and eighteen soil samples obtained from four European countries (Austria, Czech Republic, Estonia and Portugal). Doxycycline in the concentration levels of 9.07 µg/kg-20.6 µg/kg was detected in eight of the analysed samples. Samples were collected from areas where natural fertilizers (swine or cow manure) were applied. Our method can be efficiently used to monitor anti-microbial compounds in soil samples.


Subject(s)
Anti-Infective Agents , Tandem Mass Spectrometry , Cattle , Female , Humans , Swine , Animals , Chromatography, High Pressure Liquid , Tandem Mass Spectrometry/methods , Soil , Manure/analysis , Anti-Bacterial Agents/analysis , Solid Phase Extraction
10.
Nature ; 622(7983): 646-653, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37704037

ABSTRACT

We are now entering a new era in protein sequence and structure annotation, with hundreds of millions of predicted protein structures made available through the AlphaFold database1. These models cover nearly all proteins that are known, including those challenging to annotate for function or putative biological role using standard homology-based approaches. In this study, we examine the extent to which the AlphaFold database has structurally illuminated this 'dark matter' of the natural protein universe at high predicted accuracy. We further describe the protein diversity that these models cover as an annotated interactive sequence similarity network, accessible at https://uniprot3d.org/atlas/AFDB90v4 . By searching for novelties from sequence, structure and semantic perspectives, we uncovered the ß-flower fold, added several protein families to Pfam database2 and experimentally demonstrated that one of these belongs to a new superfamily of translation-targeting toxin-antitoxin systems, TumE-TumA. This work underscores the value of large-scale efforts in identifying, annotating and prioritizing new protein families. By leveraging the recent deep learning revolution in protein bioinformatics, we can now shed light into uncharted areas of the protein universe at an unprecedented scale, paving the way to innovations in life sciences and biotechnology.


Subject(s)
Databases, Protein , Deep Learning , Molecular Sequence Annotation , Protein Folding , Proteins , Structural Homology, Protein , Amino Acid Sequence , Internet , Proteins/chemistry , Proteins/classification , Proteins/metabolism
11.
Proc Natl Acad Sci U S A ; 120(33): e2305393120, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37556498

ABSTRACT

Toxin-antitoxin (TA) systems are a large group of small genetic modules found in prokaryotes and their mobile genetic elements. Type II TAs are encoded as bicistronic (two-gene) operons that encode two proteins: a toxin and a neutralizing antitoxin. Using our tool NetFlax (standing for Network-FlaGs for toxins and antitoxins), we have performed a large-scale bioinformatic analysis of proteinaceous TAs, revealing interconnected clusters constituting a core network of TA-like gene pairs. To understand the structural basis of toxin neutralization by antitoxins, we have predicted the structures of 3,419 complexes with AlphaFold2. Together with mutagenesis and functional assays, our structural predictions provide insights into the neutralizing mechanism of the hyperpromiscuous Panacea antitoxin domain. In antitoxins composed of standalone Panacea, the domain mediates direct toxin neutralization, while in multidomain antitoxins the neutralization is mediated by other domains, such as PAD1, Phd-C, and ZFD. We hypothesize that Panacea acts as a sensor that regulates TA activation. We have experimentally validated 16 NetFlax TA systems and used domain annotations and metabolic labeling assays to predict their potential mechanisms of toxicity (such as membrane disruption, and inhibition of cell division or protein synthesis) as well as biological functions (such as antiphage defense). We have validated the antiphage activity of a RosmerTA system encoded by Gordonia phage Kita, and used fluorescence microscopy to confirm its predicted membrane-depolarizing activity. The interactive version of the NetFlax TA network that includes structural predictions can be accessed at http://netflax.webflags.se/.


Subject(s)
Antitoxins , Bacterial Toxins , Antitoxins/genetics , Bacterial Toxins/metabolism , Prokaryotic Cells/metabolism , Operon/genetics , Computational Biology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
12.
Sci Rep ; 13(1): 8541, 2023 05 26.
Article in English | MEDLINE | ID: mdl-37237045

ABSTRACT

Silicone is often used in environments where water repellency is an advantage. Contact with water promotes the adhesion of microorganisms and biofilm formation. Depending on the application, this may increase the possibility of food poisoning and infections, the material's degrading appearance, and the likelihood of manufacturing defects. The prevention of microbial adhesion and biofilm formation is also essential for silicone-based elastomeric foams, which are used in direct contact with human bodies but are often difficult to clean. In this study, the microbial attachment in and the retention from the pores of silicone foams of different compositions is described and compared to those of commonly used polyurethane foams. The growth of the gram-negative Escherichia coli in the pores and their leaching during wash cycles is characterised by bacterial growth/inhibition, adhesion assay, and SEM imaging. The structural and surface properties of the materials are compared. Despite using common antibacterial additives, we have found that non-soluble particles stay isolated in the silicone elastomer layer, thus affecting surface microroughness. Water-soluble tannic acid dissolves into the medium and seems to aid in inhibiting planktonic bacterial growth, with a clear indication of the availability of tannic acid on the surfaces of SIFs.


Subject(s)
Bacterial Adhesion , Escherichia coli , Humans , Silicone Elastomers , Anti-Bacterial Agents/pharmacology , Water , Biofilms
13.
PLoS Biol ; 21(3): e3002007, 2023 03.
Article in English | MEDLINE | ID: mdl-36862747

ABSTRACT

We assess inferential quality in the field of differential expression profiling by high-throughput sequencing (HT-seq) based on analysis of datasets submitted from 2008 to 2020 to the NCBI GEO data repository. We take advantage of the parallel differential expression testing over thousands of genes, whereby each experiment leads to a large set of p-values, the distribution of which can indicate the validity of assumptions behind the test. From a well-behaved p-value set π0, the fraction of genes that are not differentially expressed can be estimated. We found that only 25% of experiments resulted in theoretically expected p-value histogram shapes, although there is a marked improvement over time. Uniform p-value histogram shapes, indicative of <100 actual effects, were extremely few. Furthermore, although many HT-seq workflows assume that most genes are not differentially expressed, 37% of experiments have π0-s of less than 0.5, as if most genes changed their expression level. Most HT-seq experiments have very small sample sizes and are expected to be underpowered. Nevertheless, the estimated π0-s do not have the expected association with N, suggesting widespread problems of experiments with controlling false discovery rate (FDR). Both the fractions of different p-value histogram types and the π0 values are strongly associated with the differential expression analysis program used by the original authors. While we could double the proportion of theoretically expected p-value distributions by removing low-count features from the analysis, this treatment did not remove the association with the analysis program. Taken together, our results indicate widespread bias in the differential expression profiling field and the unreliability of statistical methods used to analyze HT-seq data.


Subject(s)
Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Gene Expression Profiling/methods , Sequence Analysis, RNA/methods , Sample Size
14.
J Invest Dermatol ; 143(7): 1268-1278.e8, 2023 07.
Article in English | MEDLINE | ID: mdl-36736455

ABSTRACT

The role of NLRP1 inflammasome activation and subsequent production of IL-1 family cytokines in the development of atopic dermatitis (AD) is not clearly understood. Staphylococcus aureus is known to be associated with increased mRNA levels of IL1 family cytokines in the skin and more severe AD. In this study, the altered expression of IL-1 family cytokines and inflammasome-related genes was confirmed, and a positive relationship between mRNA levels of inflammasome sensor NLRP1 and IL1B or IL18 was determined. Enhanced expression of the NLRP1 and PYCARD proteins and increased caspase-1 activity were detected in the skin of patients with AD. The genetic association of IL18R1 and IL18RAP with AD was confirmed, and the involvement of various immune cell types was predicted using published GWAS and expression quantitative trait loci datasets. In keratinocytes, the inoculation with S. aureus led to the increased secretion of IL-1ß and IL-18, whereas small interfering RNA silencing of NLRP1 inhibited the production of these cytokines. Our results suggest that skin colonization with S. aureus may cause the activation of the NLRP1 inflammasome in keratinocytes, which leads to the secretion of IL-1ß and IL-18 and thereby may contribute to the pathogenesis of AD, particularly in the presence of genetic variations in the IL-18 pathway.


Subject(s)
Dermatitis, Atopic , Methicillin-Resistant Staphylococcus aureus , Humans , Inflammasomes/metabolism , Dermatitis, Atopic/genetics , Dermatitis, Atopic/metabolism , Interleukin-18/genetics , Staphylococcus aureus/metabolism , Cytokines/metabolism , RNA, Messenger , NLR Proteins
15.
Water Res ; 231: 119617, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36682239

ABSTRACT

Taking advantage of Estonia's small size and population, we have employed wastewater-based epidemiology approach to monitor the spread of SARS-CoV-2, releasing weekly nation-wide updates. In this study we report results obtained between August 2020 and December 2021. Weekly 24 h composite samples were collected from wastewater treatment plants of larger towns already covered 65% of the total population that was complemented up to 40 additional grab samples from smaller towns/villages and the specific sites of concern. The N3 gene abundance was quantified by RT-qPCR. The N3 gene copy number (concentration) in wastewater fluctuated in accordance with the SARS-CoV-2 spread within the total population, with N3 abundance starting to increase 1.25 weeks (9 days) (95% CI: [1.10, 1.41]) before a rise in COVID-19 positive cases. Statistical model between the load of virus in wastewater and number of infected people validated with the Alpha variant wave (B.1.1.17) could be used to predict the order of magnitude in incidence numbers in Delta wave (B.1.617.2) in fall 2021. Targeted testing of student dormitories, retirement and nursing homes and prisons resulted in successful early discovery of outbreaks. We put forward a SARS-CoV-2 Wastewater Index (SARS2-WI) indicator of normalized virus load as COVID-19 infection metric to complement the other metrics currently used in disease control and prevention: dynamics of effective reproduction number (Re), 7-day mean of new cases, and a sum of new cases within last 14 days. In conclusion, an efficient surveillance system that combines analysis of composite and grab samples was established in Estonia. There is considerable discussion how the viral load in wastewater correlates with the number of infected people. Here we show that this correlation can be found. Moreover, we confirm that an increased signal in wastewater is observed before the increase in the number of infections. The surveillance system helped to inform public health policy and place direct interventions during the COVID-19 pandemic in Estonia via early warning of epidemic spread in various regions of the country.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/epidemiology , Pandemics , Wastewater , Wastewater-Based Epidemiological Monitoring , RNA, Viral
16.
Mol Pharm ; 20(2): 1230-1246, 2023 02 06.
Article in English | MEDLINE | ID: mdl-36669095

ABSTRACT

Increasing evidence suggests that the chronicity of wounds is associated with the presence of bacterial biofilms. Therefore, novel wound care products are being developed, which can inhibit biofilm formation and/or treat already formed biofilms. A lack of standardized assays for the analysis of such novel antibacterial drug delivery systems enhances the need for appropriate tools and models for their characterization. Herein, we demonstrate that optimized and biorelevant in vitro and ex vivo wound infection and biofilm models offer a convenient approach for the testing of novel antibacterial wound dressings for their antibacterial and antibiofilm properties, allowing one to obtain qualitative and quantitative results. The in vitro model was developed using an electrospun (ES) thermally crosslinked gelatin-glucose (GEL-Glu) matrix and an ex vivo wound infection model using pig ear skin. Wound pathogens were used for colonization and biofilm development on the GEL-Glu matrix or pig skin with superficial burn wounds. The in vitro model allowed us to obtain more reproducible results compared with the ex vivo model, whereas the ex vivo model had the advantage that several pathogens preferred to form a biofilm on pig skin compared with the GEL-Glu matrix. The in vitro model functioned poorly for Staphylococcus epidermidis biofilm formation, but it worked well for Escherichia coli and Staphylococcus aureus, which were able to use the GEL-Glu matrix as a nutrient source and not only as a surface for biofilm growth. On the other hand, all tested pathogens were equally able to produce a biofilm on the surface of pig skin. The developed biofilm models enabled us to compare different ES dressings [pristine and chloramphenicol-loaded polycaprolactone (PCL) and PCL-poly(ethylene oxide) (PEO) (PCL/PEO) dressings] and understand their biofilm inhibition and treatment properties on various pathogens. Furthermore, we show that biofilms were formed on the wound surface as well as on a wound dressing, indicating that the demonstrated methods mimic well the in vivo situation. Colony forming unit (CFU) counting and live biofilm matrix as well as bacterial DNA staining together with microscopic imaging were performed for biofilm quantification and visualization, respectively. The results showed that both wound biofilm models (in vitro and ex vivo) enabled the evaluation of the desired antibiofilm properties, thus facilitating the design and development of more effective wound care products and screening of various formulations and active substances.


Subject(s)
Anti-Bacterial Agents , Wound Infection , Swine , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Chloramphenicol/pharmacology , Wound Infection/microbiology , Biofilms , Bandages
17.
Cell Mol Life Sci ; 79(12): 605, 2022 Nov 27.
Article in English | MEDLINE | ID: mdl-36436108

ABSTRACT

The viral epidemics and pandemics have stimulated the development of known and the discovery of novel antiviral agents. About a hundred mono- and combination antiviral drugs have been already approved, whereas thousands are in development. Here, we briefly reviewed 7 classes of antiviral agents: neutralizing antibodies, neutralizing recombinant soluble human receptors, antiviral CRISPR/Cas systems, interferons, antiviral peptides, antiviral nucleic acid polymers, and antiviral small molecules. Interferons and some small molecules alone or in combinations possess broad-spectrum antiviral activity, which could be beneficial for treatment of emerging and re-emerging viral infections.


Subject(s)
Antiviral Agents , Virus Diseases , Humans , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Antiviral Agents/chemistry , Interferons , Virus Diseases/drug therapy
18.
Nucleic Acids Res ; 50(21): 12515-12526, 2022 11 28.
Article in English | MEDLINE | ID: mdl-36370110

ABSTRACT

In Escherichia coli, the heat shock protein 15 (Hsp15) is part of the cellular response to elevated temperature. Hsp15 interacts with peptidyl-tRNA-50S complexes that arise upon dissociation of translating 70S ribosomes, and is proposed to facilitate their rescue and recycling. A previous structure of E. coli Hsp15 in complex with peptidyl-tRNA-50S complex reported a binding site located at the central protuberance of the 50S subunit. By contrast, recent structures of RqcP, the Hsp15 homolog in Bacillus subtilis, in complex with peptidyl-tRNA-50S complexes have revealed a distinct site positioned between the anticodon-stem-loop (ASL) of the P-site tRNA and H69 of the 23S rRNA. Here we demonstrate that exposure of E. coli cells to heat shock leads to a decrease in 70S ribosomes and accumulation of 50S subunits, thus identifying a natural substrate for Hsp15 binding. Additionally, we have determined a cryo-EM reconstruction of the Hsp15-50S-peptidyl-tRNA complex isolated from heat shocked E. coli cells, revealing that Hsp15 binds to the 50S-peptidyl-tRNA complex analogously to its B. subtilis homolog RqcP. Collectively, our findings support a model where Hsp15 stabilizes the peptidyl-tRNA in the P-site and thereby promotes access to the A-site for putative rescue factors to release the aberrant nascent polypeptide chain.


Subject(s)
Escherichia coli , Heat-Shock Proteins , Escherichia coli/genetics , Escherichia coli/metabolism , Heat-Shock Proteins/chemistry , Ribosomes/metabolism , RNA, Ribosomal, 23S/metabolism , RNA, Transfer/genetics , RNA, Transfer/chemistry , RNA, Transfer, Amino Acyl/metabolism
19.
Viruses ; 14(9)2022 08 25.
Article in English | MEDLINE | ID: mdl-36146673

ABSTRACT

Background: Enterovirus infections affect people around the world, causing a range of illnesses, from mild fevers to severe, potentially fatal conditions. There are no approved treatments for enterovirus infections. Methods: We have tested our library of broad-spectrum antiviral agents (BSAs) against echovirus 1 (EV1) in human adenocarcinoma alveolar basal epithelial A549 cells. We also tested combinations of the most active compounds against EV1 in A549 and human immortalized retinal pigment epithelium RPE cells. Results: We confirmed anti-enteroviral activities of pleconaril, rupintrivir, cycloheximide, vemurafenib, remdesivir, emetine, and anisomycin and identified novel synergistic rupintrivir-vemurafenib, vemurafenib-pleconaril and rupintrivir-pleconaril combinations against EV1 infection. Conclusions: Because rupintrivir, vemurafenib, and pleconaril require lower concentrations to inhibit enterovirus replication in vitro when combined, their cocktails may have fewer side effects in vivo and, therefore, should be further explored in preclinical and clinical trials against EV1 and other enterovirus infections.


Subject(s)
Enterovirus Infections , Picornaviridae , Anisomycin/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Cycloheximide/therapeutic use , Drug Combinations , Emetine , Humans , Vemurafenib/therapeutic use
20.
JAC Antimicrob Resist ; 4(3): dlac061, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35733912

ABSTRACT

Background: Listeriosis is a food-borne disease caused by the Gram-positive Bacillota (Firmicute) bacterium Listeria monocytogenes. Clinical L. monocytogenes isolates are often resistant to clinically used lincosamide clindamycin, thus excluding clindamycin as a viable treatment option. Objectives: We have established newly developed lincosamide iboxamycin as a potential novel antilisterial agent. Methods: We determined MICs of the lincosamides lincomycin, clindamycin and iboxamycin for L. monocytogenes, Enterococcus faecalis and Bacillus subtilis strains expressing synergetic antibiotic resistance determinants: ABCF ATPases that directly displace antibiotics from the ribosome and Cfr, a 23S rRNA methyltransferase that compromises antibiotic binding. For L. monocytogenes strains, either expressing VgaL/Lmo0919 or lacking the resistance factor, we performed time-kill kinetics and post-antibiotic effect assays. Results: We show that the synthetic lincosamide iboxamycin is highly active against L. monocytogenes and can overcome the intrinsic lincosamide resistance mediated by VgaL/Lmo0919 ABCF ATPase. While iboxamycin is not bactericidal against L. monocytogenes, it displays a pronounced post-antibiotic effect, which is a valuable pharmacokinetic feature. We demonstrate that VmlR ABCF of B. subtilis grants significant (33-fold increase in MIC) protection from iboxamycin, while LsaA ABCF of E. faecalis grants an 8-fold protective effect. Furthermore, the VmlR-mediated iboxamycin resistance is cooperative with that mediated by the Cfr, resulting in up to a 512-fold increase in MIC. Conclusions: While iboxamycin is a promising new antilisterial agent, our findings suggest that emergence and spread of ABCF ARE variants capable of defeating next-generation lincosamides in the clinic is possible and should be closely monitored.

SELECTION OF CITATIONS
SEARCH DETAIL
...