Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta Biomembr ; 1861(8): 1437-1445, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31150633

ABSTRACT

Most membrane proteins function through interactions with other proteins in the phospholipid bilayer, the cytosol or the extracellular milieu. Understanding the molecular basis of these interactions is key to understanding membrane protein function and dysfunction. Here we demonstrate for the first time how a nano-encapsulation method based on styrene maleic acid lipid particles (SMALPs) can be used in combination with native gel electrophoresis to separate membrane protein complexes in their native state. Using four model proteins, we show that this separation method provides an excellent measure of protein quaternary structure, and that the lipid environment surrounding the protein(s) can be probed using mass spectrometry. We also show that the method is complementary to immunoblotting. Finally we show that intact membrane protein-SMALPs extracted from a band on a gel could be visualised using electron microscopy (EM). Taken together these results provide a novel and elegant method for investigating membrane protein complexes in a native state.


Subject(s)
Membrane Proteins/chemistry , Nanotechnology , Native Polyacrylamide Gel Electrophoresis/methods , Blotting, Western , Lipids/chemistry , Mass Spectrometry , Microscopy, Electron , Protein Structure, Quaternary
2.
Sci Rep ; 9(1): 1813, 2019 02 12.
Article in English | MEDLINE | ID: mdl-30755655

ABSTRACT

Biological characterisation of membrane proteins lags behind that of soluble proteins. This reflects issues with the traditional use of detergents for extraction, as the surrounding lipids are generally lost, with adverse structural and functional consequences. In contrast, styrene maleic acid (SMA) copolymers offer a detergent-free method for biological membrane solubilisation to produce SMA-lipid particles (SMALPs) containing membrane proteins together with their surrounding lipid environment. We report the development of a reverse-phase LC-MS/MS method for bacterial phospholipids and the first comparison of the profiles of SMALP co-extracted phospholipids from three exemplar bacterial membrane proteins with different topographies: FtsA (associated membrane protein), ZipA (single transmembrane helix), and PgpB (integral membrane protein). The data showed that while SMA treatment per se did not preferentially extract specific phospholipids from the membrane, SMALP-extracted ZipA showed an enrichment in phosphatidylethanolamines and depletion in cardiolipins compared to the bulk membrane lipid. Comparison of the phospholipid profiles of the 3 SMALP-extracted proteins revealed distinct lipid compositions for each protein: ZipA and PgpB were similar, but in FtsA samples longer chain phosphatidylglycerols and phosphatidylethanolamines were more abundant. This method offers novel information on the phospholipid interactions of these membrane proteins.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Phospholipids/chemistry , Phospholipids/metabolism , Cardiolipins/chemistry , Cardiolipins/metabolism , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/metabolism , Chromatography, Liquid , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Maleates/chemistry , Phosphatidate Phosphatase/chemistry , Phosphatidate Phosphatase/metabolism , Phosphatidylethanolamines/chemistry , Phosphatidylethanolamines/metabolism , Phosphatidylglycerols/chemistry , Phosphatidylglycerols/metabolism , Tandem Mass Spectrometry
3.
Antibiotics (Basel) ; 4(4): 495-520, 2015 Nov 03.
Article in English | MEDLINE | ID: mdl-27025638

ABSTRACT

We are entering an era where the efficacy of current antibiotics is declining, due to the development and widespread dispersion of antibiotic resistance mechanisms. These factors highlight the need for novel antimicrobial discovery. A large number of antimicrobial natural products elicit their effect by directly targeting discrete areas of peptidoglycan metabolism. Many such natural products bind directly to the essential cell wall precursor Lipid II and its metabolites, i.e., preventing the utlisation of vital substrates by direct binding rather than inhibiting the metabolising enzymes themselves. Concurrently, there has been an increase in the knowledge surrounding the proteins essential to the metabolism of Lipid II at and across the cytoplasmic membrane. In this review, we draw these elements together and look to future antimicrobial opportunities in this area.

SELECTION OF CITATIONS
SEARCH DETAIL
...