Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 8(42): 29025-29036, 2016 Oct 26.
Article in English | MEDLINE | ID: mdl-27696809

ABSTRACT

The effect of incorporation of silicone oils into a siloxane-polyurethane fouling-release coatings system was explored. Incorporation of phenylmethyl silicone oil has been shown to improve the fouling-release performance of silicone-based fouling-release coatings through increased interfacial slippage. The extent of improvement is highly dependent upon the type and composition of silicone oil used. The siloxane-polyurethane (SiPU) coating system is a tough fouling-release solution, which combines the mechanical durability of polyurethane while maintaining comparable fouling-release performance with regard to commercial standards. To further improve the fouling-release performance of the siloxane-PU coating system, the use of phenylmethyl silicones oils was studied. Coatings formulations were prepared incorporating phenylmethyl silicone oils having a range of compositions and viscosities. Contact angle and surface energy measurements were conducted to evaluate the surface wettability of the coatings. X-ray photoelectron spectroscopy (XPS) depth profiling experiments demonstrated self-stratification of silicone oil along with siloxane to the coating-air interface. Several coating formulations displayed improved or comparable fouling-release performance to commercial standards during laboratory biological assay tests for microalgae (Navicula incerta), macroalgae (Ulva linza), adult barnacles (Balanus amphitrite syn. Amphibalanus amphitrite), and mussels (Geukensia demissa). Selected silicone-oil-modified siloxane-PU coatings also demonstrated comparable fouling-release performance in field immersion trials. In general, modifying the siloxane-PU fouling-release coatings with a small amount (1-5 wt % basis) of phenylmethyl silicone oil resulted in improved performance in several laboratory biological assays and in long-term field immersion assessments.

2.
Langmuir ; 30(30): 9165-75, 2014 Aug 05.
Article in English | MEDLINE | ID: mdl-25017490

ABSTRACT

When synthetic materials are submerged in marine environments, dissolved matter and marine organisms attach to their surfaces by a process known as marine fouling. This phenomenon may lead to diminished material performance with detrimental consequences. Bioinspired surface patterning and chemical surface modifications present promising approaches to the design of novel functional surfaces that can prevent biofouling phenomena. In this study, we report the synergistic effects of surface patterns, inspired by the marine decapod crab Myomenippe hardwickii in combination with chemical surface modifications toward suppressing marine fouling. M. hardwickii is known to maintain a relatively clean carapace although the species occurs in biofouling communities of tropical shallow subtidal coastal waters. Following the surface analysis of selected specimens, we designed hierarchical surface microtopographies that replicate the critical features observed on the crustacean surface. The micropatterned surfaces were modified with zwitterionic polymer brushes or with layer-by-layer deposited polyelectrolyte multilayers to enhance their antifouling and/or fouling-release potential. Chemically modified and unmodified micropatterned surfaces were subjected to extensive fouling tests, including laboratory assays against barnacle settlement and algae adhesion, and field static immersion tests. The results show a statistically significant reduction in settlement on the micropatterned surfaces as well as a synergistic effect when the microtopographies are combined with grafted polymer chains.


Subject(s)
Biofouling , Aquatic Organisms , Polymers/chemistry , Surface Properties
3.
Int J Mol Sci ; 15(6): 9255-84, 2014 May 26.
Article in English | MEDLINE | ID: mdl-24865489

ABSTRACT

As the result of the ecological impacts from the use of tributyltins (TBT) in shipping, environmental legislation for the registration of chemicals for use in the environment has grown to a monumental challenge requiring product dossiers to include information on the environmental fate and behavior of any chemicals. Specifically, persistence, bioaccumulation and toxicity, collectively known as PBT, are properties of concern in the assessment of chemicals. However, existing measurements of PBT properties are a cumbersome and expensive process, and thus not applied in the early stages of the product discovery and development. Inexpensive methods for preliminary PBT screening would minimize risks arising with the subsequent registration of products. In this article, we evaluated the PBT properties of compounds reported to possess anti-fouling properties using QSAR (quantitative structure-activity relationship) prediction programs such as BIOWIN™ (a biodegradation probability program), KOWWIN™ (log octanol-water partition coefficient calculation program) and ECOSAR™ (Ecological Structure Activity Relationship Programme). The analyses identified some small (Mr < 400) synthetic and natural products as potential candidates for environmentally benign biocides. We aim to demonstrate that while these methods of estimation have limitations, when applied with discretion, they are powerful tools useful in the early stages of research for compound selection for further development as anti-foulants.


Subject(s)
Biofouling/prevention & control , Disinfectants/analysis , Trialkyltin Compounds/analysis , Water Pollutants, Chemical/analysis , Water Pollution/analysis , Biodegradation, Environmental , Disinfectants/metabolism , Disinfectants/toxicity , Environment , Models, Statistical , Quantitative Structure-Activity Relationship , Risk Assessment , Ships , Software , Trialkyltin Compounds/metabolism , Trialkyltin Compounds/toxicity , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity
4.
PLoS One ; 8(3): e58819, 2013.
Article in English | MEDLINE | ID: mdl-23555597

ABSTRACT

Recruitment constraints on Singapore's dwindling fluted giant clam, Tridacna squamosa, population were studied by modelling fertilisation, larval transport, and settlement using real-time hydrodynamic forcing combined with knowledge of spawning characteristics, larval development, behaviour, and settlement cues. Larval transport was simulated using a finite-volume advection-diffusion model coupled to a three-dimensional hydrodynamic model. Three recruitment constraint hypotheses were tested: 1) there is limited connectivity between Singapore's reefs and other reefs in the region, 2) there is limited exchange within Singapore's Southern Islands, and 3) there exist low-density constraints to fertilisation efficacy (component Allee effects). Results showed that connectivity among giant clam populations was primarily determined by residual hydrodynamic flows and spawning time, with greatest chances of successful settlement occurring when spawning and subsequent larval dispersal coincided with the period of lowest residual flow. Simulations suggested poor larval transport from reefs located along the Peninsular Malaysia to Singapore, probably due to strong surface currents between the Andaman Sea and South China Sea combined with a major land barrier disrupting larval movement among reefs. The model, however, predicted offshore coral reefs to the southeast of Singapore (Bintan and Batam) may represent a significant source of larvae. Larval exchange within Singapore's Southern Islands varied substantially depending on the locations of source and sink reefs as well as spawning time; but all simulations resulted in low settler densities (2.1-68.6 settled individuals per 10,000 m(2)). Poor fertilisation rates predicted by the model indicate that the low density and scattered distribution of the remaining T. squamosa in Singapore are likely to significantly inhibit any natural recovery of local stocks.


Subject(s)
Bivalvia , Models, Theoretical , Animals , Coral Reefs , Ecosystem , Geography , Hydrodynamics , Islands , Oceans and Seas , Population Density , Population Dynamics , Singapore
SELECTION OF CITATIONS
SEARCH DETAIL
...