Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Emerg Microbes Infect ; 9(1): 95-110, 2020.
Article in English | MEDLINE | ID: mdl-31906790

ABSTRACT

The highly pathogenic avian influenza A (H5N6) virus has caused sporadic human infections with a high case fatality rate. Due to the continuous evolution of this virus subtype and its ability to transmit to humans, there is an urgent need to develop effective antiviral therapeutics. In this study, a murine monoclonal antibody 9F4 was shown to display broad binding affinity against H5Nx viruses. Furthermore, 9F4 can neutralize H5N6 pseudotyped particles and prevent entry into host cells. Additionally, ADCC/ADCP deficient L234A, L235A (LALA) and CDC deficient K322A mutants were generated and displayed comparable binding affinity and neutralizing activity as wild type 9F4 (9F4-WT). Notably, 9F4-WT, 9F4-LALA and 9F4-K322A exhibit in vivo protective efficacies against H5N6 infections in that they were able to reduce viral loads in mice. However, only 9F4-WT and 9F4-K322A but not 9F4-LALA were able to reduce viral pathogenesis in H5N6 challenged mice. Furthermore, depletion of phagocytic cells in mice lungs nullifies 9F4-WT's protection against H5N6 infections, suggesting a crucial role of the host's immune cells in 9F4 antiviral activity. Collectively, these findings reveal the importance of ADCC/ADCP function for 9F4-WT protection against HPAIV H5N6 and demonstrate the potential of 9F4 to confer protection against the reassortant H5-subtype HPAIVs.


Subject(s)
Antibodies, Viral/immunology , Influenza A virus/immunology , Influenza, Human/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibody-Dependent Cell Cytotoxicity , Female , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Immunity, Cellular , Influenza A virus/chemistry , Influenza A virus/genetics , Influenza, Human/virology , Lung/immunology , Lung/virology , Mice , Mice, Inbred BALB C , Phagocytosis , Protein Domains
2.
PLoS Pathog ; 15(10): e1007956, 2019 10.
Article in English | MEDLINE | ID: mdl-31589653

ABSTRACT

We report the analysis of a complex enveloped human virus, herpes simplex virus (HSV), assembled after in vivo incorporation of bio-orthogonal methionine analogues homopropargylglycine (HPG) or azidohomoalanine (AHA). We optimised protocols for the production of virions incorporating AHA (termed HSVAHA), identifying conditions which resulted in normal yields of HSV and normal particle/pfu ratios. Moreover we show that essentially every single HSVAHA capsid-containing particle was detectable at the individual particle level by chemical ligation of azide-linked fluorochromes to AHA-containing structural proteins. This was a completely specific chemical ligation, with no capsids assembled under normal methionine-containing conditions detected in parallel. We demonstrate by quantitative mass spectrometric analysis that HSVAHA virions exhibit no qualitative or quantitative differences in the repertoires of structural proteins compared to virions assembled under normal conditions. Individual proteins and AHA incorporation sites were identified in capsid, tegument and envelope compartments, including major essential structural proteins. Finally we reveal novel aspects of entry pathways using HSVAHA and chemical fluorochrome ligation that were not apparent from conventional immunofluorescence. Since ligation targets total AHA-containing protein and peptides, our results demonstrate the presence of abundant AHA-labelled products in cytoplasmic macrodomains and tubules which no longer contain intact particles detectable by immunofluorescence. Although these do not co-localise with lysosomal markers, we propose they may represent sites of proteolytic virion processing. Analysis of HSVAHA also enabled the discrimination from primary entering from secondary assembling virions, demonstrating assembly and second round infection within 6 hrs of initial infection and dual infections of primary and secondary virus in spatially restricted cytoplasmic areas of the same cell. Together with other demonstrated applications e.g., in genome biology, lipid and protein trafficking, this work further exemplifies the utility and potential of bio-orthogonal chemistry for studies in many aspects of virus-host interactions.


Subject(s)
Amino Acids/metabolism , Herpes Simplex/virology , Herpesvirus 1, Human/physiology , Retinal Pigment Epithelium/virology , Viral Structural Proteins/metabolism , Virus Assembly , Virus Internalization , Cell Proliferation , Cells, Cultured , Herpes Simplex/metabolism , Humans , Retinal Pigment Epithelium/metabolism
3.
Pathog Dis ; 77(1)2019 02 01.
Article in English | MEDLINE | ID: mdl-30839053

ABSTRACT

The non-structural protein 1 (NS1) of influenza A virus (IAV) is a multifunctional protein that antagonizes host antiviral responses, modulating virus pathogenesis. As such, it serves as a good target for research and diagnostic assay development. In this study, we have generated a novel monoclonal antibody (mAb) 19H9 and epitope mapping revealed that two residues, P85 and Y89, of NS1 are essential for interacting with this mAb. Furthermore, residues P85 and Y89 are found to be highly conserved across different IAV subtypes, namely seasonal H1N1 and H3N2, as well as the highly pathogenic H5N1 and H5N6 avian strains. Indeed, mAb 19H9 exhibits broad cross-reactivity with IAV strains of different subtypes. The binding of mAb 19H9 to residue Y89 was further confirmed by the abrogation of interaction between NS1 and p85ß. Additionally, mAb 19H9 also detected NS1 proteins expressed in IAV-infected cells, showing NS1 intracellular localization in the cytoplasm and nucleolus. To our knowledge, mAb 19H9 is the first murine mAb to bind at the juxtaposition between the N-terminal RNA-binding domain and C-terminal effector domain of NS1. It could serve as a useful research tool for studying the conformational plasticity and dynamic changes in NS1.


Subject(s)
Amino Acids/chemistry , Antibodies, Monoclonal/chemistry , Conserved Sequence , Viral Nonstructural Proteins/chemistry , Animals , Antibodies, Monoclonal/immunology , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , Binding Sites , Cell Line , Cross Reactions , Epitope Mapping , Epitopes/immunology , Fluorescent Antibody Technique , Humans , Influenza A virus , Influenza, Human/virology , Protein Binding/immunology , Structure-Activity Relationship , Viral Nonstructural Proteins/immunology , Viral Nonstructural Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...