Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Molecules ; 28(7)2023 Mar 25.
Article in English | MEDLINE | ID: mdl-37049714

ABSTRACT

Cyclin-dependent kinase 2 (CDK2) has been garnering considerable interest as a target to develop new cancer treatments and to ameliorate resistance to CDK4/6 inhibitors. However, a selective CDK2 inhibitor has yet to be clinically approved. With the desire to discover novel, potent, and selective CDK2 inhibitors, the phenylsulfonamide moiety of our previous lead compound 1 was bioisosterically replaced with pyrazole derivatives, affording a novel series of N,4-di(1H-pyrazol-4-yl)pyrimidin-2-amines that exhibited potent CDK2 inhibitory activity. Among them, 15 was the most potent CDK2 inhibitor (Ki = 0.005 µM) with a degree of selectivity over other CDKs tested. Meanwhile, this compound displayed sub-micromolar antiproliferative activity against a panel of 13 cancer cell lines (GI50 = 0.127-0.560 µM). Mechanistic studies in ovarian cancer cells revealed that 15 reduced the phosphorylation of retinoblastoma at Thr821, arrested cells at the S and G2/M phases, and induced apoptosis. These results accentuate the potential of the N,4-di(1H-pyrazol-4-yl)pyrimidin-2-amine scaffold to be developed into potent and selective CDK2 inhibitors for the treatment of cancer.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Cyclin-Dependent Kinase 2 , Structure-Activity Relationship , Amines/pharmacology , Antineoplastic Agents/pharmacology , Pyrazoles/pharmacology , Protein Kinase Inhibitors/pharmacology , Cell Line, Tumor , Cell Proliferation , Molecular Structure
2.
Bioorg Med Chem ; 80: 117158, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36706608

ABSTRACT

Deregulation of cyclin-dependent kinase 2 (CDK2) and its activating partners, cyclins A and E, is associated with the pathogenesis of a myriad of human cancers and with resistance to anticancer drugs including CDK4/6 inhibitors. Thus, CDK2 has become an attractive target for the development of new anticancer therapies and for the amelioration of the resistance to CDK4/6 inhibitors. Bioisosteric replacement of the thiazole moiety of CDKI-73, a clinically trialled CDK inhibitor, by a pyrazole group afforded 9 and 19 that displayed potent CDK2-cyclin E inhibition (Ki = 0.023 and 0.001 µM, respectively) with submicromolar antiproliferative activity against a panel of cancer cell lines (GI50 = 0.025-0.780 µM). Mechanistic studies on 19 with HCT-116 colorectal cancer cells revealed that the compound reduced the phosphorylation of retinoblastoma at Ser807/811, arrested the cells at the G2/M phase, and induced apoptosis. These results highlight the potential of the 2-anilino-4-(1-methyl-1H-pyrazol-4-yl)pyrimidine series in developing potent and selective CDK2 inhibitors to combat cancer.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Cyclin-Dependent Kinase 2 , Cyclin-Dependent Kinases/metabolism , Antineoplastic Agents/pharmacology , Pyrimidines/pharmacology , Pyrazoles/pharmacology
3.
ChemMedChem ; 18(3): e202200582, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36400715

ABSTRACT

Cyclin-dependent kinases (CDKs) 7 and 9 are deregulated in various types of human cancer and are thus viewed as therapeutic targets. Accordingly, small-molecule inhibitors of both CDKs are highly sought-after. Capitalising on our previous discovery of CDKI-73, a potent CDK9 inhibitor, medicinal chemistry optimisation was pursued. A number of N-pyridinylpyrimidin-2-amines were rationally designed, chemically synthesised and biologically assessed. Among them, N-(6-(4-cyclopentylpiperazin-1-yl)pyridin-3-yl)-4-(imidazo[1,2-a]pyrimidin-3-yl)pyrimidin-2-amine was found to be one of the most potent inhibitors of CDKs 7 and 9 as well as the most effective anti-proliferative agent towards multiple human cancer cell lines. The cellular mode of action of this compound was investigated in MV4-11 acute myeloid leukaemia cells, revealing that the compound dampened the kinase activity of cellular CDKs 7 and 9, arrested the cell cycle at sub-G1 phase and induced apoptosis.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Antineoplastic Agents/chemistry , Cyclin-Dependent Kinases , Structure-Activity Relationship , Neoplasms/drug therapy , Cyclin-Dependent Kinase 9 , Cyclins/metabolism , Protein Kinase Inhibitors , Cell Line, Tumor
4.
Pharmaceuticals (Basel) ; 15(10)2022 Sep 25.
Article in English | MEDLINE | ID: mdl-36297298

ABSTRACT

The global burden of cancer necessitates rapid and ongoing development of effective cancer therapies. One promising approach in this context is the repurposing of existing non-cancer drugs for cancer indications. A key to this approach is selecting the cellular targets against which to identify novel repurposed drugs for pre-clinical analysis. Protein kinases are highly sought-after anticancer drug targets since dysregulation of kinases is the hallmark of cancer. To identify potential kinase-targeted drug candidates from the existing portfolio of non-cancer therapeutics, we used combined in silico and in vitro approaches, including ligand-based 3D screening followed by biochemical and cellular assessments. This strategy revealed that the anti-viral drug rilpivirine is an Aurora A kinase inhibitor. In view of previous findings implicating Aurora A kinase in abnormal cell cycle regulation, we also examined the influence of rilpivirine on the growth of T47D breast cancer cells. Herein, we detail the identification of rilpivirine as an Aurora A kinase inhibitor, its molecular basis of inhibitory activity towards this kinase, and its Aurora A-mediated anticancer mechanisms in T47D cells. Our results illustrate the value of integrated in silico and in vitro screening strategies in identifying repurposed drug candidates and provide a scientific basis for further exploring the potential anticancer properties of the anti-viral drug rilpivirine.

5.
Pharmacol Res ; 180: 106249, 2022 06.
Article in English | MEDLINE | ID: mdl-35533805

ABSTRACT

Cyclin-dependent kinase 3 (CDK3) is a major player driving retinoblastoma (Rb) phosphorylation during the G0/G1 transition and in the early G1 phase of the cell cycle, preceding the effects of CDK4/cyclin D, CDK6/cyclin D, and CDK2/cyclin E. CDK3 can also directly regulate the activity of E2 factor (E2F) by skipping the role of Rb in late G1, potentially via the phosphorylation of the E2F1 partner DP1. Beyond the cell cycle, CDK3 interacts with various transcription factors involved in cell proliferation, differentiation, and transformation driven by the epidermal growth factor receptor (EGFR)/rat sarcoma virus (Ras) signaling pathway. The expression of CDK3 is extremely low in normal human tissue but upregulated in many cancers, implying a profound role in oncogenesis. Further evaluation of this role has been hampered by the lack of selective pharmacological inhibitors. Herein, we provide a comprehensive overview about the therapeutic potential of targeting CDK3 in cancer.


Subject(s)
Neoplasms , Animals , Cell Cycle , Cyclin D/metabolism , Cyclin-Dependent Kinase 3/metabolism , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Phosphorylation
6.
Eur J Med Chem ; 218: 113391, 2021 Jun 05.
Article in English | MEDLINE | ID: mdl-33823391

ABSTRACT

CDK8 is deregulated in multiple types of human cancer and is viewed as a therapeutic target for the treatment of the disease. Accordingly, the search for small-molecule inhibitors of CDK8 is being intensified. Capitalising on our initial discovery of AU1-100, a potent CDK8 inhibitor yet with a limited degree of kinase selectivity, a structure-based optimisation was carried out, with a series of new multi-substituted pyridines rationally designed, chemically prepared and biologically evaluated. Such endeavour has culminated in the identification of 42, a more potent CDK8 inhibitor with superior kinomic selectivity and oral bioavailability. The mechanism underlying the anti-proliferative effect of 42 on MV4-11 cells was studied, revealing that the compound arrested the G1 cell cycle and triggered apoptosis. The low risk of hepato- and cardio-toxicity of 42 was estimated. These findings merit further investigation of 42 as a targeted cancer therapeutic.


Subject(s)
Antineoplastic Agents/pharmacology , Cyclin-Dependent Kinase 8/antagonists & inhibitors , Drug Discovery , Protein Kinase Inhibitors/pharmacology , Administration, Oral , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Biological Availability , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclin-Dependent Kinase 8/metabolism , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Male , Mice , Mice, Inbred BALB C , Molecular Structure , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemistry , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
7.
Eur J Med Chem ; 214: 113248, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33571827

ABSTRACT

CDK8 regulates transcription either by phosphorylation of transcription factors or, as part of a four-subunit kinase module, through a reversible association of the kinase module with the Mediator complex, a highly conserved transcriptional coactivator. Deregulation of CDK8 has been found in various types of human cancer, while the role of CDK8 in supressing anti-cancer response of natural killer cells is being understood. Currently, CDK8-targeting cancer drugs are highly sought-after. Herein we detail the discovery of a series of novel pyridine-derived CDK8 inhibitors. Medicinal chemistry optimisation gave rise to 38 (AU1-100), a potent CDK8 inhibitor with oral bioavailability. The compound inhibited the proliferation of MV4-11 acute myeloid leukaemia cells with the kinase activity of cellular CDK8 dampened. No systemic toxicology was observed in the mice treated with 38. These results warrant further pre-clinical studies of 38 as an anti-cancer agent.


Subject(s)
Antineoplastic Agents/pharmacology , Cyclin-Dependent Kinase 8/antagonists & inhibitors , Drug Design , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Administration, Oral , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Biological Availability , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Cyclin-Dependent Kinase 8/metabolism , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Molecular Structure , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemistry , Pyridines/administration & dosage , Pyridines/chemistry , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
8.
Drug Discov Today ; 25(12): 2257-2267, 2020 12.
Article in English | MEDLINE | ID: mdl-33038524

ABSTRACT

Cyclin-dependent kinase (CDK) 12 engages in diversified biological functions, from transcription, post-transcriptional modification, cell cycle, and translation to cellular proliferation. Moreover, it regulates the expression of cancer-related genes involved in DNA damage response (DDR) and replication, which are responsible for maintaining genomic stability. CDK12 emerges as an oncogene or tumor suppressor in different cellular contexts, where its dysregulation results in tumorigenesis. Current CDK12 inhibitors are nonselective, which impedes the process of pharmacological target validation and drug development. Herein, we discuss the latest understanding of the biological roles of CDK12 in cancers and provide molecular analyses of CDK12 inhibitors to guide the rational design of selective inhibitors.


Subject(s)
Cyclin-Dependent Kinases/metabolism , Neoplasms/metabolism , Animals , Antineoplastic Agents/therapeutic use , Biomarkers/metabolism , Cyclin-Dependent Kinases/antagonists & inhibitors , Cyclin-Dependent Kinases/chemistry , Humans , Neoplasms/drug therapy , Protein Kinase Inhibitors/therapeutic use
9.
Mol Oncol ; 13(10): 2178-2193, 2019 10.
Article in English | MEDLINE | ID: mdl-31398271

ABSTRACT

Colorectal cancer (CRC) remains one of the most lethal human malignancies, and pursuit of new therapeutic targets for treatment has been a major research focus. Cyclin-dependent kinase 9 (CDK9), which plays a crucial role in transcription, has emerged as a target for cancer treatment. CDKI-73, one of the most potent and pharmacologically superior CDK9 inhibitors, has demonstrated excellent anti-tumour efficacy against several types of cancers. In this study, we evaluated its therapeutic potential against CRC. CDKI-73 elicited high cytotoxicity against all colon cancer cell lines tested. Cell cycle and apoptosis analysis in HCT 116 and HT29 cells revealed that CDKI-73 induced cell death without accumulation of DNA at any phase of the cell cycle. Moreover, it caused depolarisation of mitochondrial membrane, leading to caspase-independent apoptosis. Knockdown by shRNA demonstrated the CDK9-targeted mechanism of CDKI-73, which also affected the Mnk/eIF4E signalling axis. In addition, RT-qPCR analysis showed that CDKI-73 down-regulated multiple pro-survival factors at the mRNA level. Its in vivo anti-tumour efficacy was further evaluated in Balb/c nude mice bearing HCT 116 xenograft tumours. CDKI-73 significantly inhibited tumour growth (***P < 0.001) without overt toxicity. Analysis of the tumour tissues collected from the xenografted animals confirmed that the in vivo anti-tumour efficacy was associated with CDK9 targeting of CDKI-73. Overall, this study provides compelling evidence that CDKI-73 is a promising drug candidate for treating colorectal cancer.


Subject(s)
Antineoplastic Agents/therapeutic use , Colorectal Neoplasms/drug therapy , Cyclin-Dependent Kinase 9/antagonists & inhibitors , Protein Kinase Inhibitors/therapeutic use , Pyrimidines/therapeutic use , Sulfonamides/therapeutic use , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Proliferation/drug effects , Colorectal Neoplasms/metabolism , Cyclin-Dependent Kinase 9/metabolism , Female , HCT116 Cells , HT29 Cells , Humans , Mice, Inbred BALB C , Mice, Nude , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Sulfonamides/pharmacology
10.
J Med Chem ; 61(12): 5073-5092, 2018 06 28.
Article in English | MEDLINE | ID: mdl-29266937

ABSTRACT

Cyclin-dependent kinase 8 (CDK8) plays a vital role in regulating transcription either through its association with the Mediator complex or by phosphorylating transcription factors. Myriads of genetic and biochemical studies have established CDK8 as a key oncogenic driver in many cancers. Specifically, CDK8-mediated activation of oncogenic Wnt-ß-catenin signaling, transcription of estrogen-inducible genes, and suppression of super enhancer-associated genes contributes to oncogenesis in colorectal, breast, and hematological malignancies, respectively. However, while most research supports the role of CDK8 as an oncogene, other work has raised the possibility of its contrary function. The diverse biological functions of CDK8 and its seemingly context-specific roles in different types of cancers have spurred a great amount of interest and perhaps an even greater amount of controversy in the development of CDK8 inhibitors as potential cancer therapeutic agents. Herein, we review the latest landscape of CDK8 biology and its involvement in carcinogenesis. We dissect current efforts in discovering CDK8 inhibitors and attempt to provide an outlook at the future of CDK8-targeted cancer therapies.


Subject(s)
Cyclin-Dependent Kinase 8/antagonists & inhibitors , Cyclin-Dependent Kinase 8/metabolism , Molecular Targeted Therapy/methods , Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cyclin-Dependent Kinase 8/chemistry , Cyclin-Dependent Kinase 8/genetics , Cytokines/genetics , Cytokines/metabolism , Humans , Male , Neoplasms/enzymology , Phosphorylation , Protein Kinase Inhibitors/chemistry , Transcription Factors/metabolism , Tumor Escape/physiology
11.
Eur J Med Chem ; 139: 762-772, 2017 Oct 20.
Article in English | MEDLINE | ID: mdl-28863357

ABSTRACT

The discovery of novel anti-AML therapeutic agents is urgently needed, but the complex heterogeneity of the disease has so far hampered the development of a curative treatment. FLT3 inhibitors have shown therapeutic potential in clinical trials; but a monotherapy regimen has been associated with resistance mediated by the activation of parallel signalling circuitry, including MAPK and mTOR. Therefore, inhibiting a nexus of the two signalling pathways along with inhibition of FLT3 might be advantageous. Herein, we propose that a dual inhibition of FLT3 and Mnk would provide a better clinical option for AML patients compared to targeting FLT3 alone. Thus, a series of N-phenyl-4-(thiazol-5-yl)pyrimidin-2-amines and 4-(indol-3-yl)-N-phenylpyrimidin-2-amines were prepared. Potent Mnk2 inhibitors, FLT3 inhibitors, and dual inhibitors of Mnk2 and FLT3 were identified and their anti-proliferative activities assessed against MV4-11 AML cell lines. Dual inhibition of FLT3 and Mnk2 caused the increased apoptotic cell death of MV4-11 cells compared to inhibition of FLT3 or Mnk2 alone.


Subject(s)
Amines/pharmacology , Antineoplastic Agents/pharmacology , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Leukemia, Myeloid, Acute/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyrimidines/pharmacology , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , Amines/chemical synthesis , Amines/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Leukemia, Myeloid, Acute/pathology , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
12.
J Chem Inf Model ; 57(3): 413-416, 2017 03 27.
Article in English | MEDLINE | ID: mdl-28191946

ABSTRACT

Aberrant activity of cyclin-dependent kinase (CDK) 8 is implicated in various cancers. While CDK8-targeting anticancer drugs are highly sought-after, no CDK8 inhibitor has yet reached clinical trials. Herein a large library of drug-like molecules was computationally screened using two complementary cascades to identify potential CDK8 inhibitors. Thirty-three hits were identified to inhibit CDK8 and seven of them were active against colorectal cancer cell lines. Finally, the primary target was confirmed using three promising hits.


Subject(s)
Cyclin-Dependent Kinase 8/antagonists & inhibitors , Drug Evaluation, Preclinical/methods , Protein Kinase Inhibitors/pharmacology , Cell Line, Tumor , Cyclin-Dependent Kinase 8/chemistry , Cyclin-Dependent Kinase 8/metabolism , Humans , Protein Kinase Inhibitors/metabolism , User-Computer Interface
13.
J Med Chem ; 60(5): 1892-1915, 2017 03 09.
Article in English | MEDLINE | ID: mdl-28156111

ABSTRACT

Cyclin D dependent kinases (CDK4 and CDK6) regulate entry into S phase of the cell cycle and are validated targets for anticancer drug discovery. Herein we detail the discovery of a novel series of 4-thiazol-N-(pyridin-2-yl)pyrimidin-2-amine derivatives as highly potent and selective inhibitors of CDK4 and CDK6. Medicinal chemistry optimization resulted in 83, an orally bioavailable inhibitor molecule with remarkable selectivity. Repeated oral administration of 83 caused marked inhibition of tumor growth in MV4-11 acute myeloid leukemia mouse xenografts without having a negative effect on body weight and showing any sign of clinical toxicity. The data merit 83 as a clinical development candidate.


Subject(s)
Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Cyclin-Dependent Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Administration, Oral , Biological Availability , Cell Line, Tumor , Drug Design , Humans , Structure-Activity Relationship
14.
Eur J Med Chem ; 103: 539-50, 2015 Oct 20.
Article in English | MEDLINE | ID: mdl-26408454

ABSTRACT

Deregulation of protein synthesis is a common event in cancer. As MAPK-interacting kinases (Mnks) play critical roles in regulation of protein synthesis, they have emerged as novel anti-cancer targets. Mnks phosphorylate eukaryotic initiation factor 4E (eIF4E) and promote eIF4E-mediated oncogenic activity. Given that the kinase activity of Mnks is essential for oncogenesis but is dispensable for normal development, the discovery of potent and selective pharmacological Mnk inhibitors provides pharmacological target validation and offers a new strategy for cancer treatment. Herein, comprehensive in silico screening approaches were deployed, and three thieno[2,3-d]pyrimidine and pyrazolo[3,4-d]pyrimidine derivatives were identified as hit compounds. Further chemical modification of thieno[2,3-d]pyrimidine derivative 3 has given rise to a series of highly potent Mnk2 inhibitors that could be potential leads for the treatment of acute myeloid leukemia.


Subject(s)
Drug Discovery , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/metabolism , Structure-Activity Relationship
15.
Mol Pharmacol ; 88(5): 935-48, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26268528

ABSTRACT

Elevated levels of phosphorylated eukaryotic initiation factor 4E (eIF4E) have been implicated in many tumor types, and mitogen activated protein kinase-interacting kinases (Mnks) are the only known kinases that phosphorylate eIF4E at Ser209. The phosphorylation of eIF4E is essential for oncogenic transformation but is of no significance to normal growth and development. Pharmacological inhibition of Mnks therefore provides a nontoxic and effective strategy for cancer therapy. However, a lack of specific Mnk inhibitors has confounded pharmacological target validation and clinical development. Herein, we report the identification of a novel series of Mnk inhibitors and their binding modes. A systematic workflow has been established to distinguish between type III and type I/II inhibitors. A selection of 66 compounds was tested for Mnk1 and Mnk2 inhibition, and 9 out of 20 active compounds showed type III interaction with an allosteric site of the proteins. Most of the type III inhibitors exhibited dual Mnk1 and Mnk2 activities and demonstrated potent antiproliferative properties against the MV4-11 acute myeloid leukemia cell line. Interestingly, ATP-/substrate-competitive inhibitors were found to be highly selective for Mnk2, with little or no activity for Mnk1. Our study suggests that Mnk1 and Mnk2 share a common structure of the allosteric inhibitory binding site but possess different structural features of the ATP catalytic domain. The findings will assist in the future design and development of Mnk targeted anticancer therapeutics.


Subject(s)
Antineoplastic Agents/pharmacology , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Protein Serine-Threonine Kinases/antagonists & inhibitors , Adenosine Triphosphate/metabolism , Allosteric Site , Binding, Competitive , Catalytic Domain , Cell Line, Tumor , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Leukemia/drug therapy , Protein Serine-Threonine Kinases/chemistry
16.
Mol Pharmacol ; 88(2): 380-9, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26044548

ABSTRACT

The Ras/Raf/MAPK and PI3K/Akt/mTOR pathways are key signaling cascades involved in the regulation of cell proliferation and survival, and have been implicated in the pathogenesis of several types of cancers, including acute myeloid leukemia (AML). The oncogenic activity of eIF4E driven by the Mnk kinases is a convergent determinant of the two cascades, suggesting that targeting the Mnk/eIF4E axis may provide therapeutic opportunity for the treatment of cancer. Herein, a potent and selective Mnk2 inhibitor (MNKI-85) and a dual-specific Mnk1 and Mnk2 inhibitor (MNKI-19), both derived from a thienopyrimidinyl chemotype, were selected to explore their antileukemic properties. MNKI-19 and MNKI-85 are effective in inhibiting the growth of AML cells that possess an M5 subtype with FLT3-internal tandem duplication mutation. Further mechanistic studies show that the downstream effects with respect to the selective Mnk1/2 kinase inhibition in AML cells causes G1 cell cycle arrest followed by induction of apoptosis. MNKI-19 and MNKI-85 demonstrate similar Mnk2 kinase activity and cellular antiproliferative activity but exhibit different time-dependent effects on cell cycle progression and apoptosis. Collectively, this study shows that pharmacologic inhibition of both Mnk1 and Mnk2 can result in a more pronounced cellular response than targeting Mnk2 alone. However, MNKI-85, a first-in-class inhibitor of Mnk2, can be used as a powerful pharmacologic tool in studying the Mnk2/eIF4E-mediated tumorigenic mechanism. In conclusion, this study provides a better understanding of the mechanism underlying the inhibition of AML cell growth by Mnk inhibitors and suggests their potential utility as a therapeutic agent for AML.


Subject(s)
Antineoplastic Agents/pharmacology , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Leukemia, Myeloid, Acute/enzymology , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyrimidines/pharmacology , Thiophenes/pharmacology , Antineoplastic Agents/chemical synthesis , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Gene Expression Regulation, Leukemic/drug effects , HL-60 Cells , Humans , Mutation , Protein Kinase Inhibitors/chemical synthesis , Pyrimidines/chemical synthesis , Thiophenes/chemical synthesis , fms-Like Tyrosine Kinase 3/genetics
17.
Eur J Med Chem ; 95: 116-26, 2015 May 05.
Article in English | MEDLINE | ID: mdl-25800647

ABSTRACT

Phosphorylation of the eukaryotic initiation factor 4E (eIF4E) by mitogen-activated protein kinase (MAPK)-interacting kinases (Mnks) is essential for oncogenesis but unnecessary for normal development. Thus, pharmacological inhibition of Mnks may offer an effective and non-toxic anti-cancer therapeutic strategy. Herein, we report the discovery of 4-(dihydropyridinon-3-yl)amino-5-methylthieno[2,3-d]pyrimidine derivatives as potent Mnk inhibitors. Docking study of 7a in Mnk2 suggests that the compound is stabilised in the ATP binding site through multiple hydrogen bonds and hydrophobic interaction. Cellular mechanistic studies on MV-4-11 cells with leads 7a, 8e and 8f reveal that they are able to down-regulate the phosphorylated eIF4E, Mcl-1 and cyclin D1, and induce apoptosis.


Subject(s)
Carboxylic Acids/chemical synthesis , Carboxylic Acids/pharmacology , Drug Discovery , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Leukemia, Myeloid, Acute/drug therapy , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Thiophenes/chemical synthesis , Thiophenes/pharmacology , Adenosine Triphosphate/metabolism , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Proliferation/drug effects , Eukaryotic Initiation Factor-4E/metabolism , Humans , Leukemia, Myeloid, Acute/enzymology , Leukemia, Myeloid, Acute/pathology , Phosphorylation/drug effects , Structure-Activity Relationship , Tumor Cells, Cultured
18.
Future Med Chem ; 7(2): 91-102, 2015.
Article in English | MEDLINE | ID: mdl-25685999

ABSTRACT

AIM: Mitogen-activated protein kinase-interacting kinases (Mnks) are emerging anticancer targets. Mnks feature unique structural features, enhancing their importance for selective inhibitor discovery. Nonetheless, the lack of structural details obstruct the development of selective Mnk inhibitors. RESULTS: We disclose the first complete structure model of the activated state of Mnk2. Using all-atom accelerated molecular dynamics, we also demonstrate that its activation by phosphorylation grants access to distinct activation loop conformations, steering the inactive-to-active conformational transformation. Then we propose the binding mode of CGP57380 to active Mnk2, and evaluate key interactions that could be critical for future Mnk-targeted inhibitors. CONCLUSION: Critical insights of the Mnk2 activation process are gained, while providing a platform for designing Mnk-targeted anticancer agents.


Subject(s)
Drug Discovery , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Molecular Dynamics Simulation , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Models, Molecular , Phosphorylation/drug effects , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/metabolism , Structure-Activity Relationship
19.
Cancer Lett ; 357(2): 612-23, 2015 Feb 28.
Article in English | MEDLINE | ID: mdl-25527453

ABSTRACT

The Ras/Raf/MAPK and PI3K/Akt/mTORC1 cascades are two most aberrantly regulated pathways in cancers. As MAPK-interacting kinases (Mnks) are part of the convergent node of these two pathways, and play a pivotal role in cellular transformation, targeting Mnks has emerged as a potential therapeutic strategy. Herein, a dual-specific Mnk1/2 inhibitor MNKI-57 and a potent Mnk2-specific inhibitor MNKI-4 were selected for a panel screen against 28 human cancer cell lines. The study reveals that MNKI-57 and MNKI-4 are most potent against leukemia cells KYO-1 (i.e. BC-CML) and KG-1 (i.e. AML). Interestingly, we found that sensitivity of selected leukemia cells to Mnk inhibitors is correlated with the level of phosphorylated 4E-BP1 at Thr70. The anti-proliferative effects of Mnk inhibitors are cytostatic in the sensitive KYO-1 cells, inducing significant G1 arrest via down-regulation of cyclin D1 expression. In KYO-1 cells where Akt is not constitutively active, Mnk inhibitors increase the sensitivity of cells to rapamycin, resulting in a more pronounced anti-proliferative activity. Remarkably, the synergistic anti-proliferative effects are associated with a marked de-phosphorylation of 4E-BP1 at Thr70. Collectively, these data highlight the importance of 4E-BP1 as a key integrator in the MAPK and mTORC1 cascades, and suggest that a combined pharmacologic inhibition of mTORC1 and Mnk kinases offers an innovative therapeutic opportunity in BC-CML.


Subject(s)
Cell Proliferation/drug effects , Enzyme Inhibitors/pharmacology , G1 Phase Cell Cycle Checkpoints/drug effects , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Multiprotein Complexes/antagonists & inhibitors , Protein Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/antagonists & inhibitors , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Apoptosis/drug effects , Blast Crisis/genetics , Blast Crisis/metabolism , Blast Crisis/pathology , Blotting, Western , Cell Cycle Proteins , Cell Line, Tumor , Cell Survival/drug effects , Cyclin D1/metabolism , Drug Synergism , Enzyme Inhibitors/chemistry , Flow Cytometry , HCT116 Cells , HT29 Cells , Humans , Intracellular Signaling Peptides and Proteins/metabolism , K562 Cells , MCF-7 Cells , Mechanistic Target of Rapamycin Complex 1 , Molecular Structure , Multiprotein Complexes/metabolism , Phosphoproteins/genetics , Phosphoproteins/metabolism , Phosphorylation/drug effects , Protein Serine-Threonine Kinases/metabolism , Reverse Transcriptase Polymerase Chain Reaction , TOR Serine-Threonine Kinases/metabolism , Threonine/genetics , Threonine/metabolism , U937 Cells
20.
Oncotarget ; 5(17): 7691-704, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-25277198

ABSTRACT

Dysregulation of cellular transcription and translation is a fundamental hallmark of cancer. As CDK9 and Mnks play pivotal roles in the regulation of RNA transcription and protein synthesis, respectively, they are important targets for drug development. We herein report the cellular mechanism of a novel CDK9 inhibitor CDKI-73 in an ovarian cancer cell line (A2780). We also used shRNA-mediated CDK9 knockdown to investigate the importance of CDK9 in the maintenance of A2780 cells. This study revealed that CDKI-73 rapidly inhibited cellular CDK9 kinase activity and down-regulated the RNAPII phosphorylation. This subsequently caused a decrease in the eIF4E phosphorylation by blocking Mnk1 kinase activity. Consistently, CDK9 shRNA was also found to down-regulate the Mnk1 expression. Both CDKI-73 and CDK9 shRNA decreased anti-apoptotic proteins Mcl-1 and Bcl-2 and induced apoptosis. The study confirmed that CDK9 is required for cell survival and that ovarian cancer may be susceptible to CDK9 inhibition strategy. The data also implied a role of CDK9 in eIF4E-mediated translational control, suggesting that CDK9 may have important implication in the Mnk-eIF4E axis, the key determinants of PI3K/Akt/mTOR- and Ras/Raf/MAPK-mediated tumorigenic activity. As such, CDK9 inhibitor drug candidate CDKI-73 should have a major impact on these pathways in human cancers.


Subject(s)
Antineoplastic Agents/pharmacology , Cyclin-Dependent Kinase 9/antagonists & inhibitors , Ovarian Neoplasms/enzymology , Pyrimidines/pharmacology , Sulfonamides/pharmacology , Apoptosis/drug effects , Blotting, Western , Cell Line, Tumor , Female , Humans , Protein Biosynthesis/drug effects , RNA , Real-Time Polymerase Chain Reaction , Signal Transduction/drug effects , Signal Transduction/physiology , Transcription, Genetic/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...