Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 10(21): e2300670, 2023 07.
Article in English | MEDLINE | ID: mdl-37119518

ABSTRACT

Cells interact with their surrounding environment through a combination of static and dynamic mechanical signals that vary over stimulus types, intensity, space, and time. Compared to static mechanical signals such as stiffness, porosity, and topography, the current understanding on the effects of dynamic mechanical stimulations on cells remains limited, attributing to a lack of access to devices, the complexity of experimental set-up, and data interpretation. Yet, in the pursuit of emerging translational applications (e.g., cell manufacturing for clinical treatment), it is crucial to understand how cells respond to a variety of dynamic forces that are omnipresent in vivo so that they can be exploited to enhance manufacturing and therapeutic outcomes. With a rising appreciation of the extracellular matrix (ECM) as a key regulator of biofunctions, researchers have bioengineered a suite of ECM-mimicking hydrogels, which can be fine-tuned with spatiotemporal mechanical cues to model complex static and dynamic mechanical profiles. This review first discusses how mechanical stimuli may impact different cellular components and the various mechanobiology pathways involved. Then, how hydrogels can be designed to incorporate static and dynamic mechanical parameters to influence cell behaviors are described. The Scopus database is also used to analyze the relative strength in evidence, ranging from strong to weak, based on number of published literatures, associated citations, and treatment significance. Additionally, the impacts of static and dynamic mechanical stimulations on clinically relevant cell types including mesenchymal stem cells, fibroblasts, and immune cells, are evaluated. The aim is to draw attention to the paucity of studies on the effects of dynamic mechanical stimuli on cells, as well as to highlight the potential of using a cocktail of various types and intensities of mechanical stimulations to influence cell fates (similar to the concept of biochemical cocktail to direct cell fate). It is envisioned that this progress report will inspire more exciting translational development of mechanoresponsive hydrogels for biomedical applications.


Subject(s)
Hydrogels , Mesenchymal Stem Cells , Hydrogels/pharmacology , Extracellular Matrix/metabolism , Cell Differentiation , Mesenchymal Stem Cells/metabolism , Cellular Reprogramming
2.
ACS Nano ; 17(3): 2851-2867, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36633150

ABSTRACT

High extracellular matrix stiffness is a prominent feature of malignant tumors associated with poor clinical prognosis. To elucidate mechanistic connections between increased matrix stiffness and tumor progression, a variety of hydrogel scaffolds with dynamic changes in stiffness have been developed. These approaches, however, are not biocompatible at high temperature, strong irradiation, and acidic/basic pH, often lack reversibility (can only stiffen and not soften), and do not allow study on the same cell population longitudinally. In this work, we develop a dynamic 3D magnetic hydrogel whose matrix stiffness can be wirelessly and reversibly stiffened and softened multiple times with different rates of change using an external magnet. With this platform, we found that matrix stiffness increased tumor malignancy including denser cell organization, epithelial-to-mesenchymal transition and hypoxia. More interestingly, these malignant transformations could be halted or reversed with matrix softening (i.e., mechanical rescue), to potentiate drug efficacy attributing to reduced solid stress from matrix and downregulation of cell mechano-transductors including YAP1. We propose that our platform can be used to deepen understanding of the impact of matrix softening on cancer biology, an important but rarely studied phenomenon.


Subject(s)
Hydrogels , Neoplasms , Humans , Neoplasms/drug therapy , Neoplasms/pathology , Extracellular Matrix/pathology , Down-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...