Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Singapore Med J ; 63(9): 497-502, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34005849

ABSTRACT

Introduction: A physiological profiling study was conducted to evaluate thermal strain as well as fluid and electrolyte balances on heat-acclimatised men performing a 72-km route march in a field setting. Methods: 38 male soldiers (age range 18-23 years) participated in the study, as part of a cohort that marched for 72 km, with loads for about 26 hours. Core temperature and heart rate sensors were used for the duration of the march. Fluid and food intake and output were monitored for the duration of the march. Blood samples were taken one day before the march (pre-march), immediately after the march (Post 1) and on the 15th day after the march to ascertain recovery (Post 2) to assess fluid and electrolyte profiles. Results: Mean core temperature was within safe limits, ranging from 37.1 to 38.1°C throughout the march. There was an overall decrease in serum sodium levels, a decline in serum sodium concentration in 28 participants and three instances of hyponatraemia (serum sodium concentration <135 mmol/L). Conclusion: Our study found low thermal strain heat-acclimatised individuals during a 72-km route march. However, there was an overall decrease in serum sodium levels, even when the participants were allowed to drink ad libitum. Challenges of exercise-associated hyponatraemia during prolonged activities remain to be addressed.


Subject(s)
Hyponatremia , Military Personnel , Humans , Male , Adolescent , Young Adult , Adult , Water-Electrolyte Balance/physiology , Exercise/physiology , Sodium
2.
Mil Med ; 183(9-10): e338-e342, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29912380

ABSTRACT

BACKGROUND: Fluid intake during military training is prescribed based on the interactions among work rates, environmental conditions, and uniform configurations. The efficacy of this guidance has not been empirically assessed in over a decade. To determine the acceptability of the fluid intake guidance, sweat losses were measured in a variety of conditions with modern uniform/body armor configurations and were then compared to prescribed fluid intakes for each condition (workload, environment, clothing). METHODS: Whole body sweat losses of 324 Soldiers and 14 model simulations were measured under a variety of work intensities ((Watts) easy, moderate, hard), work durations (2-25 h), environmental conditions (White-Black flag), and uniform configurations (including Army Combat Uniform and body armor). Whole body sweat losses were then calculated relative to 4 h drinking guidance and in accordance with TB MED 507 recommended work/rest ratios. The differences between the prescribed fluid intake and sweat loss were calculated and expressed as a percent loss or gain of body weight. Values within a threshold of ±2% body water flux (BWF) were deemed an acceptable conservative starting point for performance and health concerns. FINDINGS: Values within ±2% BWF numbered 309/338; 25 of 338 observations exceeded the +2% BWF while 4 of 338 observations exceeded the -2% BWF. When total fluid restriction was simulated, all experienced body weight loss with 151 of 338 observations exceeding the -2% BWF. DISCUSSION: When calculated using actual measured sweating rates from the laboratory and model simulations, current fluid intake guidance appears to predict with 91.4% accuracy the volume of fluid required to maintain a proper euhydrated state (±2%) during 4 h of exercise. Simulations of total fluid restriction support the necessity for fluid intake guidance so that the Warfighter's performance does not degrade. It is recommended that the current military fluid intake guidance focuses on methods for accurately tracking fluid intakes.


Subject(s)
Fluid Therapy/standards , Guidelines as Topic/standards , Hot Temperature/adverse effects , Work Performance/standards , Drinking/physiology , Fluid Therapy/methods , Fluid Therapy/trends , Humans , Sweat/drug effects , Sweat/physiology , Work Performance/statistics & numerical data
3.
Physiol Meas ; 37(4): 485-502, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26963194

ABSTRACT

Many longitudinal studies have collected serial body core temperature (T c) data to understand thermal work strain of workers under various environmental and operational heat stress environments. This provides the opportunity for the development of mathematical models to analyse and forecast temporal T c changes across populations of subjects. Such models can reduce the need for invasive methods that continuously measure T c. This current work sought to develop a nonlinear mixed effects modelling framework to delineate the dynamic changes of T c and its association with a set of covariates of interest (e.g. heart rate, chest skin temperature), and the structure of the variability of T c in various longitudinal studies. Data to train and evaluate the model were derived from two laboratory investigations involving male soldiers who participated in either a 12 (N = 18) or 15 km (N = 16) foot march with varied clothing, load and heat acclimatisation status. Model qualification was conducted using nonparametric bootstrap and cross validation procedures. For cross validation, the trajectory of a new subject's T c was simulated via Bayesian maximum a posteriori estimation when using only the baseline T c or using the baseline T c as well as measured T c at the end of every work (march) phase. The final model described T c versus time profiles using a parametric function with its main parameters modelled as a sigmoid hyperbolic function of the load and/or chest skin temperature. Overall, T c predictions corresponded well with the measured data (root mean square deviation: 0.16 °C), and compared favourably with those provided by two recently published Kalman filter models.


Subject(s)
Body Temperature , Healthy Volunteers , Nonlinear Dynamics , Humans , Longitudinal Studies , Male , Stochastic Processes , Time Factors , Young Adult
4.
Sports Med Open ; 2(1): 26, 2015 Jun.
Article in English | MEDLINE | ID: mdl-27478761

ABSTRACT

BACKGROUND: Current literature evaluating body mass (BM) changes across a variety of running race distances is limited. The primary objective of this study was to profile the range of BM changes across race distances. The secondary objective was to evaluate the prevalence of exercise-associated hyponatremia (EAH) in runners admitted to the on-site medical tent following participation of race events of different distances. METHODS: A total of 1934 runners across seven footrace categories (10-, 21-, 25-, 42-, 50-, 84-, and 100-km) were included in the study. One thousand eight hundred eighty-seven runners had their BM measured before and after each race. Blood sodium concentrations were measured from the remaining 47 symptomatic runners admitted to the on-site medical tents and did not complete the race. RESULTS: In terms of hydration status, 106 (6 %) were overhydrated, 1377 (73 %) were euhydrated, and 404 (21 %) were dehydrated. All race distances exhibited similar percentage of overhydrated runners (5 % in 10 km, 3 % in 21 km, 5 % in 25 km, 6 % in 42 km, 8 % in 50 km, 7 % in 84 km, and 6 % in 100 km). Forty-seven runners were admitted to the medical tents. Eight (17 %) were diagnosed with EAH (4 from 42 km, 2 from 84 km, 2 from 100 km), 38 (81 %) were normonatremic, and 1 (2 %) was hypernatremic. The % ΔBM across all races ranged from -8.0 to 4.1 % with a greater decrement noted in the 42-, 50-, 84-, and 100-km categories. CONCLUSIONS: Approximately 3-8 % runners had increased post-race BM, suggesting overhydration regardless of race distance. Symptomatic EAH was seen at race distances at or above 42 km, where BM changes demonstrated the widest range of values.

5.
J Int Soc Sports Nutr ; 11(1): 51, 2014.
Article in English | MEDLINE | ID: mdl-25379031

ABSTRACT

BACKGROUND: There is limited information on the effects of sports drinks on cognitive function after exercise in the heat. We aimed to investigate the effects of ingesting a commercially available carbohydrate-electrolyte (CHO) solution on cognitive performance following exercise-induced hyperthermia. METHODS: Twelve participants completed three practices of cognitive tests, one full familiarisation and two experimental trials in an environmental chamber (dry bulb temperature: 30.2 ± 0.3°C, relative humidity: 70 ± 3%). The experimental trials consisted of five cognitive tests (symbol digit matching, search and memory, digit span, choice reaction time and psychomotor vigilance test) performed before and after a 75-min run on a treadmill at 70% VO2 max. One ml/kg body mass of a 6.8% CHO solution or placebo was consumed at the start, every 15 min during exercise and between cognitive tests after exercise. Core temperature, heart rate, blood glucose concentrations, subjective ratings and cognitive performance were assessed (symbol digit matching, search and memory, digit span, choice reaction time and psychomotor vigilance). RESULTS: Participants were hyperthermic at the end of the run (placebo: 39.5 ± 0.4°C, CHO: 39.6 ± 0.5°C; Mean ± SD; p = 0.37). The change in blood glucose was higher with CHO ingestion (1.6, 0.7 to 4.5 mmol/L) (median, range) than with placebo ingestion (0.9, -0.1 to 4.7 mmol/L; p < 0.05). CHO ingestion reduced the maximum span of digits memorized, in contrast to an increase in maximum span with placebo ingestion (p < 0.05). CHO solution had no effect on other cognitive tests (p > 0.05). CONCLUSIONS: These results suggest that CHO solution ingestion may impair short-term memory following exertional heat stress.

SELECTION OF CITATIONS
SEARCH DETAIL
...