Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732707

ABSTRACT

A cost-effective solution to the problems that the automotive industry is facing nowadays regarding regulations on emissions and fuel efficiency is to achieve weight reduction of automobile parts. Glass fiber-reinforced polymers are regularly used to manufacture various components, and some parts may also contain thermoplastic elastomers for toughness improvement. This work aimed to investigate the effect of styrene-(ethylene-co-butylene)-styrene triblock copolymer (E) and treated fly ash (C) on the morphological, thermal, and mechanical properties of long glass fiber (G)-reinforced polypropylene (PP). Results showed that the composites obtained through melt processing methods presented similar thermal stability and improved (nano)mechanical properties compared to 25-30 wt.% G-reinforced PP composites (PP-25G/PP-30G). Specifically, the impact strength and surface hardness were greatly improved. The addition of 20 wt.% E led to a 25-39% increase in impact strength and surface elasticity, while the addition of 6.5 wt.% C led to a 16% increase in surface hardness. The composite based on 25 wt.% G, 6.5 wt.% C, and 20 wt.% E presented the best-balanced properties (8-17% increase in impact strength, 38-41% increase in axial strain, and 35% increase in surface hardness) compared with PP-30G/PP-25G. Structural and morphological analysis confirmed the presence of a strong interaction between the components that make the composites. Based on these results, the PP-G-E-C composites could be presented as a viable material for automotive applications.

2.
Polymers (Basel) ; 15(11)2023 May 31.
Article in English | MEDLINE | ID: mdl-37299344

ABSTRACT

There is an ever-growing interest in recovering and recycling waste materials due to their hazardous nature to the environment and human health. Recently, especially since the beginning of the COVID-19 pandemic, disposable medical face masks have been a major source of pollution, hence the rise in studies being conducted on how to recover and recycle this waste. At the same time, fly ash, an aluminosilicate waste, is being repurposed in various studies. The general approach to recycling these materials is to process and transform them into novel composites with potential applications in various industries. This work aims to investigate the properties of composites based on silico-aluminous industrial waste (ashes) and recycled polypropylene from disposable medical face masks and to create usefulness for these materials. Polypropylene/ash composites were prepared through melt processing methods, and samples were analyzed to get a general overview of the properties of these composites. Results showed that the polypropylene recycled from face masks used together with silico-aluminous ash can be processed through industrial melt processing methods and that the addition of only 5 wt% ash with a particle size of less than 90 µm, increases the thermal stability and the stiffness of the polypropylene matrix while maintaining its mechanical strength. Further investigations are needed to find specific applications in some industrial fields.

3.
Polymers (Basel) ; 13(20)2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34685321

ABSTRACT

Masterbatches from a linear poly[styrene-b-(ethylene-co-butylene)-b-styrene] (SEBS) and halloysite nanotubes (HNT-QM) were obtained in different conditions of temperature and shear using two co-rotating twin-screw extruders. The influence of screw configuration and melt processing conditions on the morpho-structural, thermal and mechanical properties of masterbatches at macro and nanoscale was studied. A good dispersion of halloysite nanotubes and better thermal stability and tensile and nanomechanical properties were obtained at a lower temperature profile and higher screw speed. The effect of masterbatches, the best and worst alternatives, on the properties of a polypropylene (PP)-glass fiber (GF) composite was also evaluated. Double hardness, tensile strength and modulus and four times higher impact strength were obtained for PP/GF composites containing masterbatches compared to pristine PP. However, the masterbatch with the best properties led further to enhanced mechanical properties of the PP/GF composite. A clear difference between the effects of the two masterbatches was obtained by nanoindentation and nanoscratch tests. These analyses proved to be useful for the design of polymer composites for automotive parts, such as bumpers or door panels. This study demonstrated that setting-up the correct processing conditions is very important to obtain the desired properties for automotive applications.

4.
Polymers (Basel) ; 12(7)2020 Jul 02.
Article in English | MEDLINE | ID: mdl-32630673

ABSTRACT

This work aims at developing polyamide 1010 (PA1010) composites with improved fire behavior using a halogen-free flame-retardant system based on melamine (Me) and gallic acid (GA) complexes (MA). The MA complexes were formed by hydrogen bonding, starting from 1:2, 1:1, 2:1 Me:GA molar ratios. PA1010 composites were obtained by melt mixing, followed by compression molding. MA provided a plasticizing effect on the PA1010 matrix by decreasing the glass transition temperature. The influence of MA on PA1010 chain packaging was highlighted in the X-ray diffraction patterns, mainly in the amorphous phase, but affected also the α and γ planes. This was reflected in the dynamic mechanical properties by the reduction of the storage modulus. H-bonds occurrence in MA complexes, improved the efficiency in the gaseous form during fire exposure, facilitating the gas formation and finally reflected in thermal stability, thermo-oxidative stability, LOI results, and vertical burning behavior results. PA1010 containing a higher amount of GA in the complex (MA12) displayed a limiting oxygen index (LOI) value of 33.6%, much higher when compared to neat PA1010 (25.8%). Vertical burning tests showed that all the composites can achieve the V-0 rating in contrast with neat PA1010 that has V-2 classification.

SELECTION OF CITATIONS
SEARCH DETAIL
...