Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 14(21)2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36365631

ABSTRACT

Flexible materials that provide an electric, magnetic, or optic response upon deformation or tactile pressure could be important for the development of smart monitors, intelligent textiles, or in the development of robotic skins. In this work we demonstrate the capabilities of a flexible and electrically conductive polymer material that produces an electrical response with any deformation, namely the electrical resistance of the material changes proportionally with the deformation pressure. Furthermore, the material exhibits a memory effect. When compressed beyond the elastic regime, it retains the memory of the plastic deformation by increasing its resistance. The material was obtained by in situ polymerization of semiconducting polyaniline (PANi) in a polyvinyl alcohol/glycerol (PVA/Gly) hydrogel matrix at -17 °C. Upon drying of the hydrogel, an elastomer composite is obtained, with rubber-like characteristics. When compressed/decompressed, the electrical resistance of the material exhibits an unusually long equilibration/relaxation time, proportional with the load applied. These phenomena indicate a complex relaxation and reconfiguration process of the PANi/PVA elastomer matrix, with the shape change of the material due to mechanical stress.

2.
Biotechnol Adv ; 37(1): 109-131, 2019.
Article in English | MEDLINE | ID: mdl-30472307

ABSTRACT

Poly(vinyl alcohol) (PVA) has attracted considerable research interest and is recognized among the largest volume of synthetic polymers that have been produced worldwide for almost one century. This is due to its exceptional properties which dictated its extensive use in a wide variety of applications, especially in medical and pharmaceutical fields. However, studies revealed that PVA-based biomaterials present some limitations that can restrict their use or performances. To overcome these limitations, various methods have been reported, among which blending with poly(vinylpyrrolidone) (PVP) showed promising results. Thus, our aim was to offer a systematic overview on the current state concerning the preparation, properties and various applications of biomaterials based on synergistic effect of mixtures between PVA and PVP. Future trends towards where the biomaterials research is headed were discussed, showing the promising opportunities that PVA and PVP can offer.


Subject(s)
Biocompatible Materials/chemistry , Polyvinyl Alcohol/chemistry , Povidone/chemistry , Humans , Pharmaceutical Preparations , Polymers/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...