Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Pharm Des ; 9(20): 1635-48, 2003.
Article in English | MEDLINE | ID: mdl-12871062

ABSTRACT

The problem of incorporating receptor flexibility in routine in silico screening of databases of small chemical compounds for the purposes of structure based drug design is still an unsolved problem. The main reason behind this difficulty is the large number of degrees of freedom that have to be considered to represent receptor flexibility. In this paper we review protein flexibility models that have been developed to limit the number of additional search parameters. These models can be roughly divided into five different categories. These are a) use of soft receptors which relax energetic penalties due to steric clashes, b) selection of a few critical degrees of freedom in the receptor binding site, c) use of multiple receptor structures either individually or by combining them using an averaging scheme, d) use of modified molecular simulation methods, and e) use of collective degrees of freedom as a new basis of representation for protein flexibility. All these flexible receptor models strive to balance an improvement in the accuracy of the binding predictions with an increase in computational cost. In addition, other challenges such as the development of accurate solvation models and scoring functions make the receptor flexibility problem even harder.


Subject(s)
Drug Design , Models, Chemical , Receptors, Cell Surface/chemistry , Protein Conformation , Structure-Activity Relationship
2.
Eur Biophys J ; 29(2): 104-12, 2000.
Article in English | MEDLINE | ID: mdl-10877019

ABSTRACT

Experimental magnetic susceptibility tensors are reported for eight haems c with bis-His coordination. These data, obtained by fitting the dipolar shifts of backbone protons in the tetrahaem cytochromes c(3) from Desulfovibrio vulgaris and D. gigas, are analysed together with published values for other haem proteins. The x and y axes are found to rotate in the opposite sense to the axial ligands and are also counter-rotated with respect to the frontier molecular orbitals of the haem. The magnetic z-axis is close to the normal to the haem plane in each case. The magnitudes of the magnetic anisotropies are used to derive crystal field parameters and the rhombic splitting, V, is correlated with the dihedral angle between the axial ligands. Hence, it is apparent that the axial ligands are the dominant factor in determining the variation in magnetic properties between haems, and it is confirmed that "high g(max)" EPR signals are a reliable indicator of near-perpendicular ligands. These results are in full agreement with the analysis of non-Curie effects and electronic structure in the His-Met coordinated cytochromes c and C(551). Collectively, they show that the orientations of axial ligands to the haem may be estimated from single-crystal EPR data, from (13)C NMR shifts of the haem substituents, or from NMR dipolar shifts of the polypeptide.


Subject(s)
Cytochrome c Group/chemistry , Heme/chemistry , Hemeproteins/chemistry , Magnetics , Cytochrome c Group/radiation effects , Desulfovibrio , Hemeproteins/radiation effects , Nuclear Magnetic Resonance, Biomolecular
3.
J Mol Biol ; 298(1): 61-82, 2000 Apr 21.
Article in English | MEDLINE | ID: mdl-10756105

ABSTRACT

Cytochrome c(3) is a 14 kDa tetrahaem protein that plays a central role in the bioenergetic metabolism of Desulfovibrio spp. This involves an energy transduction mechanism made possible by a complex network of functional cooperativities between redox and redox/protolytic centres (the redox-Bohr effect), which enables cytochrome c(3) to work as a proton activator. The three-dimensional structures of the oxidised and reduced Desulfovibrio gigas cytochrome c(3) in solution were solved using 2D (1)H-NMR data. The reduced protein structures were calculated using INDYANA, an extended version of DYANA that allows automatic calibration of NOE data. The oxidised protein structure, which includes four paramagnetic centres, was solved using the program PARADYANA, which also includes the structural paramagnetic parameters. In this case, initial structures were used to correct the upper and lower volume restraints for paramagnetic leakage, and angle restraints derived from (13)C Fermi contact shifts of haem moiety substituents were used for the axial histidine ligands. Despite the reduction of the NOE intensities by paramagnetic relaxation, the final family of structures is of similar precision and accuracy to that obtained for the reduced form. Comparison of the two structures shows that, although the global folds of the two families of structures are similar, significant localised differences occur upon change of redox state, some of which could not be detected by comparison with the X-ray structure of the oxidised state: (1) there is a redox-linked concerted rearrangement of Lys80 and Lys90 that results in the stabilisation of haem moieties II and III when both molecules are oxidised or both are reduced, in agreement with the previously measured positive redox cooperativity between these two haem moieties. This cooperativity regulates electron transfer, enabling a two-electron step adapted to the function of cytochromes c(3) as the coupling partner of hydrogenase; and (2) the movement of haem I propionate 13 towards the interior of the protein upon reduction explains the positive redox-Bohr effect, establishing the structural basis for the redox-linked proton activation mechanism necessary for energy conservation, driving ATP synthesis.


Subject(s)
Cytochrome c Group/chemistry , Cytochrome c Group/metabolism , Desulfovibrio/chemistry , Allosteric Regulation , Calibration , Crystallography, X-Ray , Heme/chemistry , Heme/metabolism , Hydrogen Bonding , Hydrogen-Ion Concentration , Models, Molecular , Molecular Sequence Data , Nuclear Magnetic Resonance, Biomolecular , Oxidation-Reduction , Protein Conformation , Sensitivity and Specificity , Software , Solutions , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...