Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Negl Trop Dis ; 14(2): e0008029, 2020 02.
Article in English | MEDLINE | ID: mdl-32023240

ABSTRACT

Interleukin-32 is a novel inflammatory mediator that has been described to be important in the immunopathogenesis and control of infections caused by Leishmania parasites. By performing experiments with primary human cells in vitro, we demonstrate that the expression of IL-32 isoforms is dependent on the time exposed to L. amazonensis and L. braziliensis antigens. Moreover, for the first time we show the functional consequences of three different genetic variations in the IL32 (rs4786370, rs4349147, rs1555001) modulating IL-32γ expression, influencing innate and adaptive cytokine production after Leishmania exposure. Using a Brazilian cohort of 107 American Tegumentary Leishmaniasis patients and a control cohort of 245 healthy individuals, the IL32 rs4786370 genetic variant was associated with protection against ATL, whereas the IL32 rs4349147 was associated with susceptibility to the development of localized cutaneous and mucosal leishmaniasis. These novel insights may help improve therapeutic strategies and lead to benefits for patients suffering from Leishmania infections.


Subject(s)
Genetic Predisposition to Disease , Genetic Variation , Interleukins/genetics , Leishmania/classification , Leishmaniasis, Cutaneous/genetics , Adult , Aged , Brazil/epidemiology , Cytokines/genetics , Cytokines/metabolism , Female , Gene Expression Regulation/immunology , Humans , Lectins, C-Type/genetics , Lectins, C-Type/metabolism , Leishmaniasis, Cutaneous/epidemiology , Leishmaniasis, Cutaneous/immunology , Leishmaniasis, Cutaneous/metabolism , Male , Middle Aged , Nod2 Signaling Adaptor Protein/genetics , Nod2 Signaling Adaptor Protein/metabolism , Protein Isoforms , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism
2.
Cell Rep ; 28(10): 2659-2672.e6, 2019 Sep 03.
Article in English | MEDLINE | ID: mdl-31484076

ABSTRACT

American tegumentary leishmaniasis is a vector-borne parasitic disease caused by Leishmania protozoans. Innate immune cells undergo long-term functional reprogramming in response to infection or Bacillus Calmette-Guérin (BCG) vaccination via a process called trained immunity, conferring non-specific protection from secondary infections. Here, we demonstrate that monocytes trained with the fungal cell wall component ß-glucan confer enhanced protection against infections caused by Leishmania braziliensis through the enhanced production of proinflammatory cytokines. Mechanistically, this augmented immunological response is dependent on increased expression of interleukin 32 (IL-32). Studies performed using a humanized IL-32 transgenic mouse highlight the clinical implications of these findings in vivo. This study represents a definitive characterization of the role of IL-32γ in the trained phenotype induced by ß-glucan or BCG, the results of which improve our understanding of the molecular mechanisms governing trained immunity and Leishmania infection control.


Subject(s)
Immunity , Interleukins/metabolism , Leishmania braziliensis/physiology , Leishmaniasis, Cutaneous/prevention & control , beta-Glucans/pharmacology , Adult , Aged , Animals , BCG Vaccine/immunology , Bone Marrow Cells/drug effects , Bone Marrow Cells/metabolism , Female , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/metabolism , Humans , Immunity/drug effects , Interleukin-1/metabolism , Leishmania braziliensis/drug effects , Macrophages/drug effects , Macrophages/parasitology , Male , Mice, Transgenic , Middle Aged , Monocytes/drug effects , Monocytes/metabolism , Signal Transduction/drug effects , Transcription, Genetic/drug effects , Up-Regulation/drug effects , Vaccination , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...