Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ ; 12: e17285, 2024.
Article in English | MEDLINE | ID: mdl-38708359

ABSTRACT

Background: Waterlogging poses a significant threat to plant growth and yield worldwide. Identifying the genes responsible for mitigating waterlogging stress is crucial. Ethylene-responsive factors (ERFs) are transcriptional regulators that respond to various biotic and abiotic stresses in plants. However, their roles and involvement in responding to waterlogging stress remain largely unexplored. Hence, this study aimed to elucidate the role of ERFs in enhancing banana plant resilience to waterlogging. Methods: We hypothesized that introducing a group VII ERF transcription factor in Arabidopsis could enhance waterlogging stress tolerance. To test this hypothesis, we isolated MaERFVII3 from banana roots, where it exhibited a significant induction in response to waterlogging stress. The isolated MaERFVII3 was introduced into Arabidopsis plants for functional gene studies. Results: Compared with wild-type plants, the MaERFVII3-expressing Arabidopsis showed increased survival and biomass under waterlogging stress. Furthermore, the abundance of transcripts related to waterlogging and hypoxia response showed an elevation in transgenic plants but a decrease in wild-type and empty vector plants when exposed to waterlogging stress. Our results demonstrate the significant contribution of MaERFVII3 to waterlogging tolerance in Arabidopsis, providing baseline data for further exploration and potentially contributing to crop improvement programs.


Subject(s)
Musa , Plant Proteins , Plants, Genetically Modified , Stress, Physiological , Transcription Factors , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/physiology , Gene Expression Regulation, Plant , Musa/genetics , Musa/growth & development , Musa/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/growth & development , Plant Roots/genetics , Plant Roots/metabolism , Plants, Genetically Modified/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Water/metabolism
2.
Plants (Basel) ; 11(19)2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36235491

ABSTRACT

Climate change poses a serious threat to global agricultural activity and food production. Plant genome editing technologies have been widely used to develop crop varieties with superior qualities or can tolerate adverse environmental conditions. Unlike conventional breeding techniques (e.g., selective breeding and mutation breeding), modern genome editing tools offer more targeted and specific alterations of the plant genome and could significantly speed up the progress of developing crops with desired traits, such as higher yield and/or stronger resilience to the changing environment. In this review, we discuss the current development and future applications of genome editing technologies in mitigating the impacts of biotic and abiotic stresses on agriculture. We focus specifically on the CRISPR/Cas system, which has been the center of attention in the last few years as a revolutionary genome-editing tool in various species. We also conducted a bibliographic analysis on CRISPR-related papers published from 2012 to 2021 (10 years) to identify trends and potential in the CRISPR/Cas-related plant research. In addition, this review article outlines the current shortcomings and challenges of employing genome editing technologies in agriculture with notes on future prospective. We believe combining conventional and more innovative technologies in agriculture would be the key to optimizing crop improvement beyond the limitations of traditional agricultural practices.

3.
Plants (Basel) ; 11(15)2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35956531

ABSTRACT

Flooding caused or exacerbated by climate change has threatened plant growth and food production worldwide. The lack of knowledge on how crops respond and adapt to flooding stress imposes a major barrier to enhancing their productivity. Hence, understanding the flooding-responsive mechanisms of crops is indispensable for developing new flooding-tolerant varieties. Here, we examined the banana (Musa acuminata cv. Berangan) responses to soil waterlogging for 1, 3, 5, 7, 14, and 24 days. After waterlogging stress, banana root samples were analyzed for their molecular and biochemical changes. We found that waterlogging treatment induced the formation of adventitious roots and aerenchyma with conspicuous gas spaces. In addition, the antioxidant activities, hydrogen peroxide, and malondialdehyde contents of the waterlogged bananas increased in response to waterlogging stress. To assess the initial response of bananas toward waterlogging stress, we analyzed the transcriptome changes of banana roots. A total of 3508 unigenes were differentially expressed under 1-day waterlogging conditions. These unigenes comprise abiotic stress-related transcription factors, such as ethylene response factors, basic helix-loop-helix, myeloblastosis, plant signal transduction, and carbohydrate metabolisms. The findings of the study provide insight into the complex molecular events of bananas in response to waterlogging stress, which could later help develop waterlogging resilient crops for the future climate.

4.
Protein J ; 38(6): 704-715, 2019 12.
Article in English | MEDLINE | ID: mdl-31552579

ABSTRACT

Mango (Mangifera indica L.) is an economically important fruit. However, the marketability of mango is affected by the perishable nature and short shelf-life of the fruit. Therefore, a better understanding of the mango ripening process is of great importance towards extending its postharvest shelf life. Proteomics is a powerful tool that can be used to elucidate the complex ripening process at the cellular and molecular levels. This study utilized 2-dimensional gel electrophoresis (2D-GE) coupled with MALDI-TOF/TOF to identify differentially abundant proteins during the ripening process of the two varieties of tropical mango, Mangifera indica cv. 'Chokanan' and Mangifera indica cv 'Golden Phoenix'. The comparative analysis between the ripe and unripe stages of mango fruit mesocarp revealed that the differentially abundant proteins identified could be grouped into the three categories namely, ethylene synthesis and aromatic volatiles, cell wall degradation and stress-response proteins. There was an additional category for differential proteins identified from the 'Chokanan' variety namely, energy and carbohydrate metabolism. However, of all the differential proteins identified, only methionine gamma-lyase was found in both 'Chokanan' and 'Golden Phoenix' varieties. Six differential proteins were selected from each variety for validation by analysing their respective transcript expression using reverse transcription-quantitative PCR (RT-qPCR). The results revealed that two genes namely, glutathione S-transferase (GST) and alpha-1,4 glucan phosphorylase (AGP) were found to express in concordant with protein abundant. The findings will provide an insight into the fruit ripening process of different varieties of mango fruits, which is important for postharvest management.


Subject(s)
Fruit Proteins/metabolism , Fruit/metabolism , Mangifera/metabolism , Gene Expression Regulation, Plant , Proteomics/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...