Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 56(23): 17246-17255, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36394538

ABSTRACT

Sustainable aviation fuel (SAF) can reduce aviation's CO2 and non-CO2 impacts. We quantify the change in contrail properties and climate forcing in the North Atlantic resulting from different blending ratios of SAF and demonstrate that intelligently allocating the limited SAF supply could multiply its overall climate benefit by factors of 9-15. A fleetwide adoption of 100% SAF increases contrail occurrence (+5%), but lower nonvolatile particle emissions (-52%) reduce the annual mean contrail net radiative forcing (-44%), adding to climate gains from reduced life cycle CO2 emissions. However, in the short term, SAF supply will be constrained. SAF blended at a 1% ratio and uniformly distributed to all transatlantic flights would reduce both the annual contrail energy forcing (EFcontrail) and the total energy forcing (EFtotal, contrails + change in CO2 life cycle emissions) by ∼0.6%. Instead, targeting the same quantity of SAF at a 50% blend ratio to ∼2% of flights responsible for the most highly warming contrails reduces EFcontrail and EFtotal by ∼10 and ∼6%, respectively. Acknowledging forecasting uncertainties, SAF blended at lower ratios (10%) and distributed to more flights (∼9%) still reduces EFcontrail (∼5%) and EFtotal (∼3%). Both strategies deploy SAF on flights with engine particle emissions exceeding 1012 m-1, at night-time, and in winter.


Subject(s)
Aviation , Aviation/methods , Climate
2.
Environ Sci Technol ; 54(5): 2941-2950, 2020 03 03.
Article in English | MEDLINE | ID: mdl-32048502

ABSTRACT

The climate forcing of contrails and induced-cirrus cloudiness is thought to be comparable to the cumulative impacts of aviation CO2 emissions. This paper estimates the impact of aviation contrails on climate forcing for flight track data in Japanese airspace and propagates uncertainties arising from meteorology and aircraft black carbon (BC) particle number emissions. Uncertainties in the contrail age, coverage, optical properties, radiative forcing, and energy forcing (EF) from individual flights can be 2 orders of magnitude larger than the fleet-average values. Only 2.2% [2.0, 2.5%] of flights contribute to 80% of the contrail EF in this region. A small-scale strategy of selectively diverting 1.7% of the fleet could reduce the contrail EF by up to 59.3% [52.4, 65.6%], with only a 0.014% [0.010, 0.017%] increase in total fuel consumption and CO2 emissions. A low-risk strategy of diverting flights only if there is no fuel penalty, thereby avoiding additional long-lived CO2 emissions, would reduce contrail EF by 20.0% [17.4, 23.0%]. In the longer term, widespread use of new engine combustor technology, which reduces BC particle emissions, could achieve a 68.8% [45.2, 82.1%] reduction in the contrail EF. A combination of both interventions could reduce the contrail EF by 91.8% [88.6, 95.8%].


Subject(s)
Aircraft , Aviation , Climate , Soot , Technology
SELECTION OF CITATIONS
SEARCH DETAIL
...