Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 12344, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811686

ABSTRACT

Electric motors are essential equipment widely employed in various sectors. However, factors such as prolonged operation, environmental conditions, and inadequate maintenance make electric motors prone to various failures. In this study, we propose a thermography-based motor fault detection method based on InceptionV3 model. To enhance the detection accuracy, we apply Contrast Limited Adaptive Histogram Equalization (CLAHE) to the input images. Furthermore, we improved the performance of the InceptionV3 by integrating a Squeeze-and-Excitation (SE) channel attention mechanism. The proposed model was tested using a dataset containing 369 thermal images of an electric motor with 11 types of faults. Image augmentation was employed to increase the data size and the evaluation was conducted using fivefold cross validation. Experimental results indicate that the proposed model can achieve accuracy, precision, recall, and F1 score of 98.82%, 98.93%, 98.82%, and 98.87%, respectively. Additionally, by freezing the fully connected layers of the InceptionV3 model for feature extraction and training a Support Vector Machines (SVM) to perform classification, it is able to achieve 100% detection rate across all four evaluation metrics. This research contributes to the field of industrial motor fault diagnosis. By incorporating deep learning techniques based on InceptionV3 and SE channel attention mechanism with a traditional classifier, the proposed method can accurately classify different motor faults.

2.
Sensors (Basel) ; 21(19)2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34640698

ABSTRACT

Optometrists, ophthalmologists, orthoptists, and other trained medical professionals use fundus photography to monitor the progression of certain eye conditions or diseases. Segmentation of the vessel tree is an essential process of retinal analysis. In this paper, an interactive blood vessel segmentation from retinal fundus image based on Canny edge detection is proposed. Semi-automated segmentation of specific vessels can be done by simply moving the cursor across a particular vessel. The pre-processing stage includes the green color channel extraction, applying Contrast Limited Adaptive Histogram Equalization (CLAHE), and retinal outline removal. After that, the edge detection techniques, which are based on the Canny algorithm, will be applied. The vessels will be selected interactively on the developed graphical user interface (GUI). The program will draw out the vessel edges. After that, those vessel edges will be segmented to bring focus on its details or detect the abnormal vessel. This proposed approach is useful because different edge detection parameter settings can be applied to the same image to highlight particular vessels for analysis or presentation.


Subject(s)
Image Processing, Computer-Assisted , Retinal Vessels , Algorithms , Diagnostic Techniques, Ophthalmological , Fundus Oculi , Retinal Vessels/diagnostic imaging
3.
Sensors (Basel) ; 21(16)2021 Aug 06.
Article in English | MEDLINE | ID: mdl-34450766

ABSTRACT

Proliferative Diabetic Retinopathy (PDR) is a severe retinal disease that threatens diabetic patients. It is characterized by neovascularization in the retina and the optic disk. PDR clinical features contain highly intense retinal neovascularization and fibrous spreads, leading to visual distortion if not controlled. Different image processing techniques have been proposed to detect and diagnose neovascularization from fundus images. Recently, deep learning methods are getting popular in neovascularization detection due to artificial intelligence advancement in biomedical image processing. This paper presents a semantic segmentation convolutional neural network architecture for neovascularization detection. First, image pre-processing steps were applied to enhance the fundus images. Then, the images were divided into small patches, forming a training set, a validation set, and a testing set. A semantic segmentation convolutional neural network was designed and trained to detect the neovascularization regions on the images. Finally, the network was tested using the testing set for performance evaluation. The proposed model is entirely automated in detecting and localizing neovascularization lesions, which is not possible with previously published methods. Evaluation results showed that the model could achieve accuracy, sensitivity, specificity, precision, Jaccard similarity, and Dice similarity of 0.9948, 0.8772, 0.9976, 0.8696, 0.7643, and 0.8466, respectively. We demonstrated that this model could outperform other convolutional neural network models in neovascularization detection.


Subject(s)
Deep Learning , Diabetic Retinopathy , Artificial Intelligence , Diabetic Retinopathy/diagnostic imaging , Fundus Oculi , Humans , Neural Networks, Computer
SELECTION OF CITATIONS
SEARCH DETAIL
...