Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 3471, 2022 03 02.
Article in English | MEDLINE | ID: mdl-35236868

ABSTRACT

Both intra-pore hydrate morphology and inter-pore hydrate distribution influence the physical properties of hydrate-bearing sediments, yet there has been no pore-scale observations of hydrate habit under pressure in preserved pressure core samples so far. We present for the first time a pore-scale micro-CT study of natural hydrate-bearing cores that were acquired from Green Canyon Block 955 in UT-GOM2-1 Expedition and preserved within hydrate pressure-temperature stability conditions throughout sub-sampling and imaging processes. Measured hydrate saturation in the sub-samples, taken from units expected to have in-situ saturation of 80% or more, ranges from 3 ± 1% to 56 ± 11% as interpreted from micro-CT images. Pore-scale observations of gas hydrate in the sub-samples suggest that hydrate in silty sediments at the Gulf of Mexico is pore-invasive rather than particle displacive, and hydrate particles in these natural water-saturated samples are pore-filling with no evidence of grain-coating. Hydrate can form a connected 3D network and provide mechanical support for the sediments even without cementation. The technical breakthrough to directly visualize particle-level hydrate pore habits in natural sediments reported here sheds light on future investigations of pressure- and temperature-sensitive processes including hydrate-bearing sediments, dissolved gases, and other biochemical processes in the deep-sea environment.


Subject(s)
Geologic Sediments , Methane , Gases/chemistry , Geologic Sediments/chemistry , Methane/chemistry , Temperature , X-Ray Microtomography
SELECTION OF CITATIONS
SEARCH DETAIL
...