Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Heredity (Edinb) ; 108(5): 507-14, 2012 May.
Article in English | MEDLINE | ID: mdl-22108628

ABSTRACT

Global mitochondrial DNA (mtDNA) data indicates that the dog originates from domestication of wolf in Asia South of Yangtze River (ASY), with minor genetic contributions from dog-wolf hybridisation elsewhere. Archaeological data and autosomal single nucleotide polymorphism data have instead suggested that dogs originate from Europe and/or South West Asia but, because these datasets lack data from ASY, evidence pointing to ASY may have been overlooked. Analyses of additional markers for global datasets, including ASY, are therefore necessary to test if mtDNA phylogeography reflects the actual dog history and not merely stochastic events or selection. Here, we analyse 14,437 bp of Y-chromosome DNA sequence in 151 dogs sampled worldwide. We found 28 haplotypes distributed in five haplogroups. Two haplogroups were universally shared and included three haplotypes carried by 46% of all dogs, but two other haplogroups were primarily restricted to East Asia. Highest genetic diversity and virtually complete phylogenetic coverage was found within ASY. The 151 dogs were estimated to originate from 13-24 wolf founders, but there was no indication of post-domestication dog-wolf hybridisations. Thus, Y-chromosome and mtDNA data give strikingly similar pictures of dog phylogeography, most importantly that roughly 50% of the gene pools are shared universally but only ASY has nearly the full range of genetic diversity, such that the gene pools in all other regions may derive from ASY. This corroborates that ASY was the principal, and possibly sole region of wolf domestication, that a large number of wolves were domesticated, and that subsequent dog-wolf hybridisation contributed modestly to the dog gene pool.


Subject(s)
Animals, Domestic/genetics , Dogs/genetics , Evolution, Molecular , Wolves/genetics , Y Chromosome/genetics , Animals , Animals, Domestic/classification , Asia, Southeastern , Chromosomes, Human, Y/genetics , DNA, Mitochondrial/genetics , Dogs/classification , Female , Genetic Variation , Haplotypes , Humans , Male , Molecular Sequence Data , Phylogeny , Wolves/classification
2.
Poult Sci ; 90(10): 2402-6, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21934026

ABSTRACT

The effects of incubation temperature on the sex of Japanese quail chicks were investigated in this study. The study was conducted on Japanese quail. In all, 4500 eggs obtained from 2 generations were used. At the beginning of the study, a new flock was formed from available hatching eggs. Hatching eggs were gathered at 3 different ages (8 to 10 weeks, 16 to 18 weeks and 22 to 24 weeks of age) from the laying period in this flock. These eggs were exposed to 5 different incubation temperatures (36.7, 37.2, 37.7, 38.2, and 38.7°C). The hatching results were evaluated for each group. Chicks obtained from these temperature groups were reared separately to obtain quail for breeding. Eggs for incubation were gathered from these breeding quail when they were between 15 and 18 weeks of age. These eggs were placed in an incubator at a standard (37.7°C) temperature, separated by F(1)-generation temperature groups. The chicks in all groups were reared separately, and the sex of the chicks was determined at maturity. Statistical differences (P < 0.05) were found for the sex of the chicks in the third group (22 to 24 weeks) of the F(1) generation, compared with other groups. This result confirmed the hypothesis that different incubation temperatures for the first generation (at the embryo stage) might influence the sex of the next generation of chicks. Further studies are needed to investigate the effects of incubation temperature on chicks from different perspectives.


Subject(s)
Coturnix/embryology , Temperature , Animals , Embryo, Nonmammalian/embryology , Female , Incubators/veterinary , Male , Sex Determination Processes , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL