Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Biomol Struct Dyn ; 9(1): 101-11, 1991 Aug.
Article in English | MEDLINE | ID: mdl-1781941

ABSTRACT

A number of nucleic acid base pairs and complexes between the bases and the amide group of acrylamide have been studied experimentally by using mass spectrometry and theoretically by the method of atom-atom potential function calculations. It has been found from temperature dependencies of peak intensities in mass spectra of m2.2.9(3) Gua.m1Ura, m9 Ade.m1Cyt, m2.2.9(3) Gua.m1Gua.m1Cyt pairs that enthalpy values, delta H, of the complex formation are equal to 14.2 +/- 1.1, 13.5 +/- 1.3 and 16.4 +/- 1.4 kcal/M, respectively, and those of acrylamide with m1.3(2) Ura and m1Thy corresponds to 9.7 +/- 1.0 and 6.8 +/- 0.6 kcal/M. There is a good agreement of the experimental data with calculations when taking into account both the amino-oxo and the amino-hydroxy tautomeric forms of guanine. A combined use of the data allows us to determine the energy, the modes of interaction and the structure of the complexes. The results are discussed in connection with the modelling of molecular structure of biopolymers by the method of classical potential functions, protein-nucleic acids recognition and fidelity of nucleic acids biosynthesis.


Subject(s)
Acrylamides/chemistry , Nucleic Acids/chemistry , Acrylamide , Amino Acid Sequence , Base Composition , Mass Spectrometry , Molecular Sequence Data , Thermodynamics , Thymine/analogs & derivatives , Thymine/chemistry , Uracil/analogs & derivatives , Uracil/chemistry
2.
J Biomol Struct Dyn ; 8(4): 889-907, 1991 Feb.
Article in English | MEDLINE | ID: mdl-2059345

ABSTRACT

The formation of water clusters, polyhydrates of nucleotide bases and their associates during simultaneous condensation of water and base molecules in vacuo onto a surface of a needle emitter cooled to 170 K was studied by field ionization mass spectrometry. It was found that different emitter temperatures are characterized by a specific distribution of intensities of cluster currents, depending on the number of water molecules in clusters. These distributions correlate with structural peculiarities and the relative energetics of formation of water clusters, polyhydrates of nucleotide bases and their associates at low temperature. The features observed in mass spectra for clusters m9Ade (H2O)5, m1Ura (H2O)4 and m9Ade m1Ura (H2O)2 are treated as a result of formation of energetically favorable structures stabilized by H-bonded bridges of water molecules. The relative association constants and formation enthalpies of the noncomplementary pairs Ade Cyt, Gua Ura and the associates which model the aminoacid-base complexes m1Ura Gln and m1.3(2)Thy Gln were determined from the temperature dependencies of the intensities of mass spectra peaks in the range 290-320 K.


Subject(s)
Nucleotides/chemistry , Water/chemistry , Base Composition , Hydrogen Bonding , Mass Spectrometry/methods , Molecular Structure , Temperature , Thermodynamics , X-Ray Diffraction
4.
Biophys Chem ; 15(2): 139-47, 1982 May.
Article in English | MEDLINE | ID: mdl-17000424

ABSTRACT

Enthalpies of sublimation, DeltaH degrees (subl) and of solution in water, DeltaH degrees (sol) were determined for a series of crystalline 1,3-dimethyl-uracil derivatives substituted at the C5-ring carbon atom with alkyl groups (-C(n)H(2n+1), n = 2-4) and some of their C(5.6)-cyclooligomethylene analogues (-(CH2)(n)-, n = 3-5). From these data. enthalpies of hydration DeltaH degrees (hydr)= DeltaH degrees (sol) - DeltaH degrees (subl) were calculated and corrected for energies of cavity formation in pure liquid water in order to obtain enthalpies of interaction, DeltaH degrees (int) of the solutes with their hydration shells. The latter are discussed together with the recalculated DeltaH degrees (int) for variously methylated uracils, obtained previously according to a simplified correction procedure, in terms of perturbations in the energy and scheme of hydration of the diketopyrimidine ring brought about by alkyl substitution. It was found that each -CH2-group added with an alkyl substitution contributes favorably about -20 kJ mol(-1) toDeltaH degrees (int). This contribution is partially cancelled by the unfavorable contribution to DeltaH degrees (int) connected with removal of some water molecules bound in the first and subsequent hydration layers by an alkyl substituent. This is particularly evident on substitution at the polar side of the diketopyrimidine ring on which water molecules are expected to be bound specifically.

5.
Biophys Chem ; 11(1): 17-21, 1980 Feb.
Article in English | MEDLINE | ID: mdl-16997235

ABSTRACT

Enthalpies of sublimation DeltaH(0)(subl) crystalline uracil, thymine and their methylated derivatives as well as of N,N-diethylthymine were determinated by the quartz-resonator method and mass spectrometry. Enthalpies of solution at infinite dilution DeltaH(0)(sol) in water of aBcylated compounds were obtained calorimetrically. Hence the calculated enthalpies of hydration: DeltaH(0)(hydrsubal) = DeltaH(0)(sol) - DeltaH(0)(subl), were corrected for energies of cavity formation in pure liquid water to yield enthalpies of interaction DeltaH(0)(sint) of the solutes with their hydration shells. For uracil DeltaH(0)(int) = -59.8 kJ mole(-1) was obtained in this way. This value decreased linearly on N-methyl substitution with a mean increment of about 6.5 kJ mole CH2(-1). After C(5) or C(6) ring substitution it increased by about 3 kJ. These results are discussed in connection with heat of dilution data and theoretical schemes of hydration.

SELECTION OF CITATIONS
SEARCH DETAIL
...