Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 12318, 2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35853964

ABSTRACT

The metallization of heterojunction solar cells requires a further reduction of silver consumption to lower production costs and save resources. This article presents how filament stretching of polymer-based low-temperature curing Ag pastes during micro-extrusion enables this reduction while at the same time offering a high production throughput potential. In a series of experiments the relationship between the printing velocity and the filament stretching, thus the reduction of Ag-electrode widths and Ag laydown is evaluated. Furthermore, an existing filament stretching model for the parallel dispensing process is advanced further and utilized to calculate the elongational viscosity. The stretching effect enables a reduction of the Ag-electrode width by down to Δwf = - 40%rel. depending on the nozzle diameter and paste type. The Ag laydown has been reduced from mAg,cal. = 0.84 mg per printed line to only mAg,cal. = 0.54 mg per printed Ag-electrode when 30 µm nozzle openings are used, demonstrating the promising potential of parallel dispensing technology for the metallization of silicon heterojunction solar cells.

2.
Micromachines (Basel) ; 14(1)2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36677141

ABSTRACT

This work focuses on developing an understanding of the rheological properties of polymer-based dopant-source inks at the timescales relevant to inkjet printing and their corresponding roles in determining the production of defect-free droplets. Ink-specific optimization of printing processes for phosphorus and boron dopant-source inks with different compositions is demonstrated. Rheological flow curves measured by a piezo axial vibrator (PAV) were used to study the changes in complex viscosity (η*) and in the elastic (G') and viscous (G″) components of the shear modulus (G*) with respect to changes in frequency (from fmin = 1 kHz to fmax = 10 kHz) to obtain an insight into the high-frequency behaviour of inks, as well as the effects of temperature (25 °C and 45 °C) and the natural aging time of the inks. Inks demonstrating complex viscosity η*min ≥ 2 mPas to η*max ≤ 20 mPas and an elastic modulus G' ≤ 20 Pa, produced droplets with negligible defects. Of the three rheological parameters (η*, G' and G″), the elastic component (G') of the shear modulus was observed to have the greatest significance in determining the stability and homogeneity of ink droplets, thus dictating the quality of the printed structures. The reliability and stability of droplet formation were further investigated through voltage waveform simulation using an oscilloscope.

3.
Sci Rep ; 11(1): 4352, 2021 Feb 23.
Article in English | MEDLINE | ID: mdl-33623114

ABSTRACT

Fine line screen printing for solar cell metallization is one of the most critical steps in the entire production chain of solar cells, facing the challenge of providing a conductive grid with a minimum amount of resource consumption at an ever increasing demand for higher production speeds. The continuous effort of the industrial and scientific community has led to tremendous progress over the last 20 years, demonstrating an average reduction rate for the finger width of approximately 7 µm per year with the latest highlight of achieving widths of 19 µm. However, further reductions will become a major challenge because commonly used metal pastes are not able to penetrate arbitrary small screen opening structures. Therefore, this study introduces the novel dimensionless parameter screen utility index SUI which quantifies the expected printability of any 2-dimensional screen architecture in reference to a given paste. Further, we present a full theoretical derivation of the SUI, a correlation to experimental results and an in-depth simulation over a broad range of screen manufacturing parameters. The analysis of the SUI predicts the point when commonly used wire materials will fail to provide sufficient meshes for future solar cell metallization tasks. Therefore, novel wire materials (e.g. the use of carbon nanotubes) with very high ultimate tensile strengths are discussed and suggested in order to fulfill the SUI requirements for printing contact fingers with widths below 10 µm. We further analyze economic aspects of design choices for screen angles by presenting an analytical solution for the calculation of mesh cutting losses in industrial screen production. Finally, we combine all aspects by presenting a generalized approach for designing a 2-dimensional screen architecture which fulfills the task of printing at a desired finger width.

4.
Sci Rep ; 10(1): 7409, 2020 May 04.
Article in English | MEDLINE | ID: mdl-32366947

ABSTRACT

This paper presents a systematic approach for the development of highly filled suspensions used for an electrochemical dispensing approach. Electrochemical dispensing is an alternative structuring process to locally pattern PVD full-area thin metal layers with the goal to create contacts on solar cells or circuit boards by anodic metal dissolution. Achieving a narrow patterned line width requires a dispensing paste with a high yield stress, a small particle size distribution and a good electrical conductivity. Therefore this work focuses on the formulation and characterization of dispensing pastes in terms of their rheological and electrical properties and their particle size distribution. Furthermore, the printing performance is evaluated in dispensing experiments. In this study, samples with a yield stress above 5000 Pa and an average particle size below 0.4 µm were produced, resulting in dispensed line widths below 100 µm with a high aspect ratio above 0.6. The lack of electrical conductivity was solved by adding KCl solution to the paste, which will add to the ionic conductivity of the NaNO3 basis paste formulation. With this approach, printed line widths down to 115 µm and etched line widths below 90 µm at high aspect ratio were achieved on 50 nm aluminum layers.

5.
RSC Adv ; 10(38): 22440-22448, 2020 Jun 10.
Article in English | MEDLINE | ID: mdl-35514584

ABSTRACT

In this work we present for the first time high capacity silicon/carbon-graphite blend slurries designed for application in 3D-printed lithium ion microbatteries (3D-MLIBs). The correlation between electrochemical and rheological properties of the corresponding slurries was systematically investigated with the prospect of production by an automated dispensing process. A variation of the binder content (carboxymethyl cellulose/styrene-butadiene rubber, CMC/SBR) between 6 wt%, 12 wt%, 18 wt% and 24 wt% in the anode slurry proved to be crucial for the printing process. Regarding the rheological properties increasing binder content leads to increased viscosity and yield stress values promising printed structures with high aspect ratios. Consequently, interdigital 3D-printed micro anode structures with increasing aspect ratios were printed with increasing binder content. For printed 6-layer structures aspect ratios of 6.5 were achieved with anode slurries containing 24 wt% binder. Electrochemical results from planar coin cell measurements showed that anodes containing 12 wt% CMC/SBR binder content exhibited stable cycling at the highest charge capacities of 484 mA h g-1 at a current rate of C/4. Furthermore, at 4C the cells showed high capacity retention of 89% compared to cycling at C/4. Based on this study and the given material formulation we recommend 18 wt% CMC/SBR as the best trade-off between electrochemical and rheological properties for future work with fully 3D-printed MLIBs.

SELECTION OF CITATIONS
SEARCH DETAIL
...