Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 25(16): 19262-19274, 2017 Aug 07.
Article in English | MEDLINE | ID: mdl-29041119

ABSTRACT

In the past two decades high precision optical astronomical interferometry has benefited from the use of photonic technologies. Today, near-infrared interferometric instruments deliver high-resolution, hyperspectral images of astronomical objects and combine up to 4 independent telescopes at a time thanks to integrated optics (IO). Following the success of IO interferometry, several initiatives aim at developing components which could combine simultaneously more telescopes and extend their operation beyond the near-infrared bands. Here we report on the development of multi-telescope IO beam combiners for mid-infrared interferometry exploiting the three-dimensional (3D) structuring capabilities of ultrafast laser inscription. We characterise the capability of a 2-telescope and a 4-telescope beam combiner to retrieve the visibility amplitude and phase of monochromatic light fields at a wavelength of 3.39 µm. The combiner prototypes exploit different 3D architectures and are written with a femtosecond laser on substrates of Gallium Lanthanum Sulfide. Supporting numerical simulations of the performance of the beam combiners show that there is still room for improvement and indicate a roadmap for the development of future prototypes.

2.
Opt Express ; 25(17): 20642-20653, 2017 Aug 21.
Article in English | MEDLINE | ID: mdl-29041743

ABSTRACT

Astronomical interferometry is a unique technique that allows observation with angular resolutions on the milliarcsec scale by combining the light of several apertures hundreds of meters apart. The PIONIER and GRAVITY instruments at the Very Large Telescope Interferometer have demonstrated that silica-based integrated optics (IO) provide a small-scale and highly stable solution for the interferometric beam combination process. Yet, important science cases such as exoplanet hunting or the spectroscopic characterization of exoplanetary atmospheres are favorable for observation in the mid-IR, namely the atmospheric windows L and L' band (3-4 µm), a wavelength range that is not covered by conventional silica-based IO. Here, we propose laser-inscribed IO 2×2 couplers in ZBLAN and experimentally assess the critical properties of the component for broadband mid-IR interferometry. We measure the splitting ratio over the 2.5 to 5.0 µm range and find excellent broadband contrast over the L (3.1-3.6 µm) and L' (3.6 - 4.0 µm) bands. Furthermore, we quantify the dispersion properties of the coupler and find a phase variation as low as 0.02 rad across the L and L' band, respectively. By optimizing the NA of our injection beam, we measured a very high total throughput of 58% over the L band including Fresnel reflection and coupling losses. We also compare our findings to recent advances in mid-IR IO in GLS and discuss its advantages and disadvantages for the implementation in future mid-IR interferometers.

SELECTION OF CITATIONS
SEARCH DETAIL
...