Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Sci Technol Adv Mater ; 25(1): 2342772, 2024.
Article in English | MEDLINE | ID: mdl-38766515

ABSTRACT

As miniaturization of semiconductor memory devices is reaching its physical and technological limits, there is a demand for memory technologies that operate on new principles. Atomic switches are nanoionic devices that show repeatable resistive switching between high-resistance and low-resistance states under bias voltage applications, based on the transport of metal ions and redox reactions in solids. Their essential structure consists of an ion conductor sandwiched between electrochemically active and inert electrodes. This review focuses on the resistive switching mechanism of atomic switches that utilize a solid polymer electrolyte (SPE) as the ion conductor. Owing to the superior properties of polymer materials such as mechanical flexibility, compatibility with various substrates, and low fabrication costs, SPE-based atomic switches are a promising candidate for the next-generation of volatile and nonvolatile memories. Herein, we describe their operating mechanisms and key factors for controlling the device performance with different polymer matrices. In particular, the effects of moisture absorption in the polymer matrix on the resistive switching behavior are addressed in detail. As potential applications, atomic switches with inkjet-printed SPE and quantum conductance behavior are described. SPE-based atomic switches also have great potential in use for neuromorphic devices. The development of these devices will be enhanced using nanoarchitectonics concepts, which integrate functional materials and devices.


This article reviews a series of works starting with the author's 2011 paper on solid polymer electrolyte-based atomic switches, and describes the current status and future prospects for this technology.

2.
Nano Lett ; 24(15): 4383-4392, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38513213

ABSTRACT

Physical reservoir computing is a promising way to develop efficient artificial intelligence using physical devices exhibiting nonlinear dynamics. Although magnetic materials have advantages in miniaturization, the need for a magnetic field and large electric current results in high electric power consumption and a complex device structure. To resolve these issues, we propose a redox-based physical reservoir utilizing the planar Hall effect and anisotropic magnetoresistance, which are phenomena described by different nonlinear functions of the magnetization vector that do not need a magnetic field to be applied. The expressive power of this reservoir based on a compact all-solid-state redox transistor is higher than the previous physical reservoir. The normalized mean square error of the reservoir on a second-order nonlinear equation task was 1.69 × 10-3, which is lower than that of a memristor array (3.13 × 10-3) even though the number of reservoir nodes was fewer than half that of the memristor array.

3.
Sci Adv ; 10(9): eadk6438, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38416821

ABSTRACT

Molecule-based reservoir computing (RC) is promising for achieving low power consumption neuromorphic computing, although the information-processing capability of small numbers of molecules is not clear. Here, we report a few- and single-molecule RC that uses the molecular vibration dynamics in the para-mercaptobenzoic acid (pMBA) detected by surface-enhanced Raman scattering (SERS) with tungsten oxide nanorod/silver nanoparticles. The Raman signals of the pMBA molecules, adsorbed at the SERS active site of the nanorod, were reversibly perturbated by the application of voltage-induced local pH changes near the molecules, and then used to perform time-series analysis tasks. Despite the small number of molecules used, our system achieved good performance, including >95% accuracy in various nonlinear waveform transformations, 94.3% accuracy in solving a second-order nonlinear dynamic system, and a prediction error of 25.0 milligrams per deciliter in a 15-minute-ahead blood glucose level prediction. Our work provides a concept of few-molecular computing with practical computation capabilities.

4.
Sci Rep ; 13(1): 21060, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38030675

ABSTRACT

Reservoir computing (RC) is a machine learning framework suitable for processing time series data, and is a computationally inexpensive and fast learning model. A physical reservoir is a hardware implementation of RC using a physical system, which is expected to become the social infrastructure of a data society that needs to process vast amounts of information. Ion-gating reservoirs (IGR) are compact and suitable for integration with various physical reservoirs, but the prediction accuracy and operating speed of redox-IGRs using WO3 as the channel are not sufficient due to irreversible Li+ trapping in the WO3 matrix during operation. Here, in order to enhance the computation performance of redox-IGRs, we developed a redox-based IGR using a (104) oriented LiCoO2 thin film with high electronic and ionic conductivity as a trap-free channel material. The subject IGR utilizes resistance change that is due to a redox reaction (LiCoO2 ⟺ Li1-xCoO2 + xLi+ + xe-) with the insertion and desertion of Li+. The prediction error in the subject IGR was reduced by 72% and the operation speed was increased by 4 times compared to the previously reported WO3, which changes are due to the nonlinear and reversible electrical response of LiCoO2 and the high dimensionality enhanced by a newly developed physical masking technique. This study has demonstrated the possibility of developing high-performance IGRs by utilizing materials with stronger nonlinearity and by increasing output dimensionality.

5.
ACS Appl Mater Interfaces ; 15(40): 47184-47195, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37768881

ABSTRACT

Artificial synapses with ideal functionalities are essential in hardware neural networks to allow for energy-efficient analog computing. However, the realization of linear and symmetric weight updates in real synaptic devices has proven challenging and ultimately limits the online training capabilities of neural network systems. Herein, we investigate the effect of Mg doping on a LiCoO2 (LCO) channel in a Li ion-gated synaptic transistor, so as to improve long-term and short-term plasticity. Two transistor structures, based on a lithium phosphorus oxynitride electrolyte, were examined by using undoped LCO and Mg-doped LCO as the channel material between the source and drain electrodes. It was found that Mg doping increased the initial channel conductance by 3 orders of magnitude, which is probably due to the substitution of Co3+ by Mg2+ and the compensation of hole creation. It was further found that the doped channel transistor showed good retention characteristics and better linearity of long-term potentiation and depression when voltage pulses were applied to the gate electrode. The improved retention and linearity are attributed to an extended range of the insulator-to-conductor transition by Mg doping and Li-ion extraction/insertion cooperated in the LCO channel. Using the obtained synaptic weight update, artificial neural network simulations demonstrated that the doped channel transistor shows an image recognition accuracy of ∼80% for handwritten digits, which is higher than ∼65% exhibited by the undoped channel transistor. Mg doping also improved short-term plasticity such as paired-pulse facilitation/depression and Hebbian spike timing-dependent plasticity. These results indicate that elemental doping to the channel of Li ion-gated synaptic transistors could be a useful procedure for realizing robust neuromorphic systems based on analog computing.

6.
ACS Appl Mater Interfaces ; 15(15): 19279-19289, 2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37023114

ABSTRACT

Neuromorphic processors using artificial neural networks are the center of attention for energy-efficient analog computing. Artificial synapses act as building blocks in such neural networks for parallel information processing and data storage. Herein we describe the fabrication of a proton-gated synaptic transistor using a Nafion electrolyte thin film, which is patterned by electron-beam lithography (EBL). The device has an active channel of indium-zinc-oxide (IZO) between the source and drain electrodes, which shows Ohmic behavior with a conductance level on the order of 100 µS. Under voltage applications to the gate electrode, the channel conductance is changed due to the injection and extraction of protons between the IZO channel and the Nafion electrolyte, emulating various synaptic functions with short-term and long-term plasticity. When positive (negative) gate voltage pulses are consecutively applied, the device exhibits long-term potentiation (depression) at the same number of steps as the number of input pulses. Based on these characteristics, an artificial neural network using this transistor shows ∼84% image recognition accuracy for handwritten digits. The subject transistor also successfully mimics paired-pulse facilitation and depression, Hebbian spike-timing-dependent plasticity, and Pavlovian associative learning followed by extinction activities. Finally, dynamical pattern image memorization is demonstrated in a 5 × 5 array of these synaptic transistors. The results indicate that EBL patternable Nafion electrolytes have great potential for use in the fabrication and circuit-level integration of synaptic devices for neuromorphic computing applications.

7.
Angew Chem Int Ed Engl ; 62(9): e202217203, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36595484

ABSTRACT

Solid-state batteries (SSBs) that use solid electrolytes instead of flammable liquid electrolytes have the potential to generate higher specific capacity and offer better safety. Magnesium (Mg) based SSBs with Mg metal anodes are considered to be one of the most promising energy storage candidates, because it gives high theoretical volumetric capacities of 3830 mAh cm-3 . Here, we demonstrate an atomic layer deposition (ALD) process with a double nitrogen plasma process that successfully produces nitrogen-incorporated magnesium phosphorus oxynitride (MgPON) solid-state electrolyte (SSE) thin films at a low deposition temperature of 125 °C. The ALD MgPON SSEs exhibit an ionic conductivity of 0.36 and 1.2 µS cm-1 at 450 and 500 °C, respectively. The proposed ALD strategy shows the ability of conformal deposition nitrogen-doped SSEs on pattered substrates and is attractive for using nitride ion-conducing films as protective or wetting interlayers in solid-state Mg and Li batteries.

8.
Sci Adv ; 8(50): eade1156, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36516242

ABSTRACT

Physical reservoir computing has recently been attracting attention for its ability to substantially reduce the computational resources required to process time series data. However, the physical reservoirs that have been reported to date have had insufficient computational capacity, and most of them have a large volume, which makes their practical application difficult. Here, we describe the development of a Li+ electrolyte-based ion-gating reservoir (IGR), with ion-electron-coupled dynamics, for use in high-performance physical reservoir computing. A variety of synaptic responses were obtained in response to past experience, which were stored as transient charge density patterns in an electric double layer, at the Li+ electrolyte/diamond interface. Performance for a second-order nonlinear dynamical equation task is one order of magnitude higher than memristor-based reservoirs. The edge-of-chaos state of the IGR enabled the best computational capacity. The IGR described here opens the way for high-performance and integrated neural network devices.

9.
Adv Mater ; 34(32): e2201248, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35404522

ABSTRACT

Quantum effects in novel functional materials and new device concepts represent a potential breakthrough for the development of new information processing technologies based on quantum phenomena. Among the emerging technologies, memristive elements that exhibit resistive switching, which relies on the electrochemical formation/rupture of conductive nanofilaments, exhibit quantum conductance effects at room temperature. Despite the underlying resistive switching mechanism having been exploited for the realization of next-generation memories and neuromorphic computing architectures, the potentialities of quantum effects in memristive devices are still rather unexplored. Here, a comprehensive review on memristive quantum devices, where quantum conductance effects can be observed by coupling ionics with electronics, is presented. Fundamental electrochemical and physicochemical phenomena underlying device functionalities are introduced, together with fundamentals of electronic ballistic conduction transport in nanofilaments. Quantum conductance effects including quantum mode splitting, stability, and random telegraph noise are analyzed, reporting experimental techniques and challenges of nanoscale metrology for the characterization of memristive phenomena. Finally, potential applications and future perspectives are envisioned, discussing how memristive devices with controllable atomic-sized conductive filaments can represent not only suitable platforms for the investigation of quantum phenomena but also promising building blocks for the realization of integrated quantum systems working in air at room temperature.

10.
Materials (Basel) ; 15(2)2022 Jan 06.
Article in English | MEDLINE | ID: mdl-35057125

ABSTRACT

Scandium (Sc) and yttrium (Y) co-doped ZrO2 (ScYSZ) thin films were prepared on a SiO2-Si substrate via pulsed laser deposition (PLD) method. In order to obtain good quality thin films with the desired microstructure, various oxygen partial pressures (PO2) from 0.01 Pa to 10 Pa and substrate temperatures (Ts) from 25 °C to 800 °C were investigated. X-ray diffraction (XRD) patterns results showed that amorphous ScYSZ thin films were formed at room substrate temperature while cubic polycrystalline thin films were obtained at higher substrate temperatures (Ts = 200 °C, 400 °C, 600 °C, 800 °C). Raman spectra revealed a distinct Raman shift at around 600 cm-1 supporting a cubic phase. However, a transition from cubic to tetragonal phase can be observed with increasing oxygen partial pressure. Photoemission spectroscopy (PES) spectra suggested supporting analysis that more oxygen vacancies in the lattice can be observed for samples deposited at lower oxygen partial pressures resulting in a cubic structure with higher dopant cation binding energies as compared to the tetragonal structure observed at higher oxygen partial pressure. On the other hand, dense morphologies can be obtained at lower  PO2 (0.01 Pa and 0.1 Pa) while more porous morphologies can be obtained at higher PO2 (1.0 Pa and 10 Pa).

11.
Nanoscale ; 14(5): 2013-2022, 2022 Feb 03.
Article in English | MEDLINE | ID: mdl-35072675

ABSTRACT

Monolayer MoS2 exhibits interesting optoelectronic properties that have been utilized in applications such as photodetectors and light emitting diodes. For image sensing applications, improving the light sensitivity relies on achieving a low dark current that enables the detection weak light signals. Although previous reports on improving the detectivity have been explored with heterostructures and pn junction devices, some of these approaches lack CMOS compatibility processing and sufficient low dark current suppression. Steep slope transistors that overcome the Boltzmann tyranny can further enhance the performance in photodetectors by providing efficient extraction of photogenerated charges. Here, we report a monolayer MoS2 floating gate negative capacitance phototransistor with the integration of a hafnium-zirconium oxide ferroelectric capacitor. In this study, a SSmin of 30 mV dec-1, very low dark currents of 10-13-10-14 A, and a high detectivity of 7.2 × 1015 cm Hz1/2 W-1 were achieved under weak light illumination due to an enhancement in the photogating effect. In addition, its potential as an optical memory and as an optical synapse with excellent long-term potentiation characteristics in an artificial neural network was also explored. Overall, this device structure offers high photosensitivity to weak light signals for future low-powered optoelectronic applications.

12.
Nano Lett ; 21(19): 7938-7945, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34516142

ABSTRACT

Center-surround antagonism, a key mechanism in the retina, contributes to the encoding of edge contrast rather than of the overall information on a visual image. Here, a neuromorphic system consisting of multiple ionic devices is built, where each device has a lithium cobalt oxide channel arranged on a common lithium phosphorus oxynitride electrolyte. Because of the migration of Li ions between the channels through the electrolyte, the devices are highly interactive, as is seen with retinal neurons. On the basis of the excitation of single devices and device-to-device inhibition, the system successfully emulates the antagonistic center-surround receptive field and the Mach band effect in which perceived contrast is enhanced at the edges between dark and bright regions. Furthermore, a two-dimensional array system is simulated to implement edge detection for real images. This scheme enables computer vision tasks with simple and effective operations, owing to the intrinsic properties of the materials employed.


Subject(s)
Lithium , Retina , Ions , Retina/diagnostic imaging , Vision, Ocular
13.
Commun Chem ; 4(1): 117, 2021 Aug 06.
Article in English | MEDLINE | ID: mdl-36697812

ABSTRACT

The electric double layer (EDL) effect at solid electrolyte/electrode interfaces has been a key topic in many energy and nanoelectronics applications (e.g., all-solid-state Li+ batteries and memristors). However, its characterization remains difficult in comparison with liquid electrolytes. Herein, we use a novel method to show that the EDL effect, and its suppression at solid electrolyte/electronic material interfaces, can be characterized on the basis of the electric conduction characteristics of hydrogenated diamond(H-diamond)-based EDL transistors (EDLTs). Whereas H-diamond-based EDLT with a Li-Si-Zr-O Li+ solid electrolyte showed EDL-induced hole density modulation over a range of up to three orders of magnitude, EDLT with a Li-La-Ti-O (LLTO) Li+ solid electrolyte showed negligible enhancement, which indicates strong suppression of the EDL effect. Such suppression is attributed to charge neutralization in the LLTO, which is due to variation in the valence state of the Ti ions present. The method described is useful for quantitatively evaluating the EDL effect in various solid electrolytes.

14.
ACS Nano ; 14(11): 16065-16072, 2020 Nov 24.
Article in English | MEDLINE | ID: mdl-33137249

ABSTRACT

An all-solid-state redox device, composed of magnetite (Fe3O4) thin film and Li+ conducting electrolyte thin film, was fabricated for the manipulation of a magnetization angle at room temperature (RT). This is a key technology for the creation of efficient spintronics devices, but has not yet been achieved at RT by other carrier doping methods. Variations in magnetization angle and magnetic stability were precisely tracked through the use of planar Hall measurements at RT. The magnetization angle was reversibly manipulated at 10° by maintaining magnetic stability. Meanwhile, the manipulatable angle reached 56°, although the manipulation became irreversible when the magnetic stability was reduced. This large manipulation of magnetic angle was achieved through tuning of the 3d electron number and modulation of the internal strain in the Fe3O4 due to the insertion of high-density Li+ (approximately 1021 cm-3). This RT manipulation is applicable to highly integrated spintronics devices due to its simple structure and low electric power consumption.

15.
Sci Adv ; 4(9): eaau2057, 2018 09.
Article in English | MEDLINE | ID: mdl-30202787

ABSTRACT

Decision-making is being performed frequently in areas of computation to obtain better performance in a wide variety of current intelligent activities. In practical terms, this decision-making must adapt to dynamic changes in environmental conditions. However, because of limited computational resources, adaptive decision-making is generally difficult to achieve using conventional computers. The ionic decision-maker reported here, which uses electrochemical phenomena, has excellent dynamic adaptabilities, as demonstrated by its ability to solve multiarmed bandit problems (MBPs) in which a gambler given a choice of slot machines must select the appropriate machines to play so as to maximize the total reward in a series of trials. Furthermore, our ionic decision-maker successfully solves dynamic competitive MBPs, which cause serious loss due to the collision of selfish users in communication networks. The technique used in our devices offers a shift toward decision-making using the motion of ions, an approach that could find myriad applications in computer science and technology, including artificial intelligence.

16.
Sci Rep ; 7(1): 10534, 2017 09 05.
Article in English | MEDLINE | ID: mdl-28874766

ABSTRACT

A magneto-electrochemical cell and an electric double layer transistor (EDLT), each containing diluted [Bmim]FeCl4 solution, have been controlled by applying a magnetic field in contrast to the control of conventional field effect devices by an applied electric field. A magnetic field of several hundred mT generated by a small neodymium magnet is sufficient to operate magneto-electrochemical cells, which generate an electromotive force of 130 mV at maximum. An EDLT composed of hydrogen-terminated diamond was also operated by applying a magnetic field. Although it showed reversible drain current modulation with a magnetoresistance effect of 503%, it is not yet advantageous for practical application. Magnetic control has unique and interesting characteristics that are advantageous for remote control of electrochemical behavior, the application for which conventional electrochemical devices are not well suited. Magnetic control is opening a door to new applications of electrochemical devices and related technologies.

17.
Nanoscale ; 8(29): 13873-9, 2016 Aug 07.
Article in English | MEDLINE | ID: mdl-27215752

ABSTRACT

In recent years, interesting nanoscale phenomena caused by physical or chemical effects due to local ion transfers near heterointerfaces using ionic conductors have been discovered, and the so-called "nanoionic devices" (which apply new functionalities gained by exploiting those phenomena) are being proposed. Up until now, nanoionic devices with unique functions that have been unattainable with conventional semiconductor devices have been developed. These devices include brain-type devices, completely solid-state electric-double-layer transistors, multi-functional on-demand-type devices, superconducting elements capable of modulating transition temperature, and so on. As for research and development on nanodevices for next-generation information and communication technologies, expected developments of these devices in the field of solid-state ionics are introduced based on the results of our research.

18.
ACS Nano ; 10(1): 1655-61, 2016 Jan 26.
Article in English | MEDLINE | ID: mdl-26730501

ABSTRACT

An all-solid-state redox device composed of Fe3O4 thin film and Li(+) ion conducting solid electrolyte was fabricated for use in tuning magnetization and magnetoresistance (MR), which are key factors in the creation of high-density magnetic storage devices. Electrical conductivity, magnetization, and MR were reversibly tuned by Li(+) insertion and removal. Tuning of the various Fe3O4 thin film properties was achieved by donation of an electron to the Fe(3+) ions. This technique should lead to the development of spintronics devices based on the reversible switching of magnetization and spin polarization (P). It should also improve the performance of conventional magnetic random access memory (MRAM) devices in which the ON/OFF ratio has been limited to a small value due to a decrease in P near the tunnel barrier.

19.
Phys Chem Chem Phys ; 18(3): 1392-6, 2016 Jan 21.
Article in English | MEDLINE | ID: mdl-26685986

ABSTRACT

Inappropriate operation could make a memristive device "dead" and cause the loss of resistive switching performance. In this study, the revival of "dead" devices was investigated in the case of WO3-x-based memristive devices. It is believed that inappropriate operation with a high-voltage pulse creates an ordered structure of oxygen vacancies and such an ordered structure makes the normal reset process fail. By precisely controlled voltage sweeping at certain compliance currents, a "dead" device can be revived. The revival operation disrupts the ordered structure by Joule heating and recovers Schottky-like barrier modulation-based switching.

20.
Adv Mater ; 28(2): 377-84, 2016 Jan 13.
Article in English | MEDLINE | ID: mdl-26573772

ABSTRACT

Metaplasticity, a higher order of synaptic plasticity, as well as a key issue in neuroscience, is realized with artificial synapses based on a WO3 thin film, and the activity-dependent metaplastic responses of the artificial synapses, such as spike-timing-dependent plasticity, are systematically investigated. This work has significant implications in neuromorphic computation.


Subject(s)
Electrical Equipment and Supplies , Neural Networks, Computer , Oxides , Synapses/physiology , Action Potentials , Biomimetic Materials , Equipment Design , Excitatory Postsynaptic Potentials , Microscopy, Electron, Transmission , Neuronal Plasticity , Optical Imaging , Time
SELECTION OF CITATIONS
SEARCH DETAIL
...