Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nanoscale Adv ; 5(5): 1345-1355, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36866257

ABSTRACT

5 nanometer sized detonation nanodiamonds (DNDs) are studied as potential single-particle labels for distance measurements in biomolecules. Nitrogen-vacancy (NV) defects in the crystal lattice can be addressed through their fluorescence and optically-detected magnetic resonance (ODMR) of a single particle can be recorded. To achieve single-particle distance measurements, we propose two complementary approaches based on spin-spin coupling or optical super-resolution imaging. As a first approach, we try to measure the mutual magnetic dipole-dipole coupling between two NV centers in close DNDs using a pulse ODMR sequence (DEER). The electron spin coherence time, a key parameter to reach long distance DEER measurements, was prolonged using dynamical decoupling reaching T 2,DD ≈ 20 µs, extending the Hahn echo decay time T 2 by one order of magnitude. Nevertheless, an inter-particle NV-NV dipole coupling could not be measured. As a second approach, we successfully localize the NV centers in DNDs using STORM super-resolution imaging, achieving a localization precision of down to 15 nm, enabling optical nanometer-scale single-particle distance measurements.

2.
Nanoscale Adv ; 4(10): 2268-2277, 2022 May 17.
Article in English | MEDLINE | ID: mdl-36133696

ABSTRACT

Detonation nanodiamonds (DNDs) are a class of very small and spherical diamond nanocrystals. They are used in polymer reinforcement materials or as drug delivery systems in the field of nanomedicine. Synthesized by detonation, only the final deaggregation step down to the single-digit nanometer size (<10 nm) unfolds their full potential. Existing deaggregation methods mainly rely on mechanical forces, such as high-power sonication or bead milling. These techniques entail drawbacks such as contamination of the sample and the need for a specialized apparatus. In this paper, we report a purely chemical deaggregation method by simply combining oxidation in air followed by a boiling acid treatment, to produce highly stable single-digit DNDs in a suspension. The resulting DNDs are surface functionalized with carboxyl groups, the final boiling acid treatment removes primary metal contaminants such as magnesium, iron or copper and the nanoparticles remain dispersed over a wide pH range. Our method can be easily carried out in a standard chemistry laboratory with commonly available laboratory apparatus. This is a key step for many DND-based applications, ranging from materials science to biological or medical applications.

3.
Magn Reson (Gott) ; 2(1): 33-48, 2021.
Article in English | MEDLINE | ID: mdl-37904782

ABSTRACT

We demonstrate room-temperature 13C hyperpolarization by dynamic nuclear polarization (DNP) using optically polarized triplet electron spins in two polycrystalline systems: pentacene-doped [carboxyl-13C] benzoic acid and microdiamonds containing nitrogen-vacancy (NV-) centers. For both samples, the integrated solid effect (ISE) is used to polarize the 13C spin system in magnetic fields of 350-400 mT. In the benzoic acid sample, the 13C spin polarization is enhanced by up to 0.12 % through direct electron-to-13C polarization transfer without performing dynamic 1H polarization followed by 1H-13C cross-polarization. In addition, the ISE has been successfully applied to polarize naturally abundant 13C spins in a microdiamond sample to 0.01 %. To characterize the buildup of the 13C polarization, we discuss the efficiencies of direct polarization transfer between the electron and 13C spins as well as that of 13C-13C spin diffusion, examining various parameters which are beneficial or detrimental for successful bulk dynamic 13C polarization.

4.
Biochim Biophys Acta Gen Subj ; 1864(2): 129354, 2020 02.
Article in English | MEDLINE | ID: mdl-31071412

ABSTRACT

BACKGROUND: Nanodiamonds (NDs) provide a unique multitasking system for drug delivery and fluorescent imaging in biological environments. Owing to their quantum properties, NDs are expected to be employed as multifunctional probes in the future for the accurate visualization of biophysical parameters such as temperature and magnetic fields. However, the use of NDs for the selective targeting of the biomolecules of interest within a complicated biological system remains a challenge. One of the most promising solutions is the appropriate surface design of NDs based on organic chemistry and biochemistry. The engineered NDs have high biocompatibility and dispersibility in a biological environment and hence undergo cellular uptake through specific pathways. SCOPE OF REVIEW: This review focuses on the selective targeting of NDs for biomedical and biophysical applications from the viewpoint of ND surface functionalizations and modifications. These pretreatments make possible the specific targeting of biomolecules of interest on or in a cell by NDs via a designed biochemical route. MAJOR CONCLUSIONS: The surface of NDs is covalently or noncovalently modified with silica, polymers, or biomolecules to reshape them, control their size, and enhance the colloidal stability and biomolecular selectivity toward the biomolecules of interest. Electroporation, chemical treatment, injection, or endocytosis are the methods generally adopted to introduce NDs into living cells. The pathway, efficiency, and the cell viability depend on the selected method. GENERAL SIGNIFICANCE: In the biomedical field, the surface modification facilitates specific delivery of a drug, leading to a higher therapeutic efficacy. In biophysical applications, the surface modification paves the way for the accurate measurement of physical parameters to gain a better understanding of various cell functions.


Subject(s)
Drug Carriers , Nanodiamonds/chemistry , Nanotechnology/methods , Animals , Biocompatible Materials/chemistry , Cell Membrane/chemistry , Cell Survival , Endocytosis , Humans , Lipids/chemistry , Nanoparticles/chemistry , Polymers/chemistry , Silicon Dioxide/chemistry , Static Electricity , Surface Properties
5.
ACS Nano ; 13(6): 6461-6468, 2019 06 25.
Article in English | MEDLINE | ID: mdl-31140778

ABSTRACT

Nanodiamonds containing negatively charged nitrogen-vacancy (NV-) centers are versatile nanosensors thanks to their optical and spin properties. While currently most fluorescent nanodiamonds in use have at least a size of a few tens of nanometers, the challenge lies in engineering the smallest nanodiamonds containing a single NV- defect. Such a tiny nanocrystal with a single NV- center is an "optical spin label" for biomolecules, which can be detected in a fluorescence microscope. In this paper, we address two key issues toward this goal using detonation nanodiamonds (DNDs) of 4-5 nm in size. The DND samples are treated first with electron irradiation to create more vacancies. With the aid of electron paramagnetic resonance (EPR) spectroscopy, we confirm a steady increase of negatively charged NV- centers with higher fluence. This leads to a 4 times higher concentration in NV- defects after irradiation with 2 MeV electrons at a fluence of 5 × 1018 e-/cm2. Interestingly, we observe that the annealing of DND does not increase the number of NV- centers, which is in contrast to bulk diamond and larger nanodiamonds. Since DNDs are strongly aggregated after the irradiation process, we apply a boiling acid treatment as a second step to fabricate monodisperse DNDs enriched in NV- centers. These are two important steps toward "optical spin labels" having a single-digit nanometer range size that could be used for bioimaging and nanosensing.

6.
Bioconjug Chem ; 29(8): 2786-2792, 2018 08 15.
Article in English | MEDLINE | ID: mdl-29975511

ABSTRACT

Fluorescent nanodiamonds (FNDs) have been attracting much attention as promising therapeutic agents and probes for bioimaging and nanosensing. For their biological applications, several hydrophilizing methods to enhance FND colloidal stability have been developed to suppress their aggregation and the nonspecific adsorption to biomolecules in complex biomedical environments. However, these methods involve several complicated synthetic and purification steps, which prohibit the use of FNDs for bioapplications by biologists. In this study, we describe a simple one-pot FND hydrophilization method that comprises coating of the surface of the nanoparticles with COOH-terminated hyperbranched polyglycerol (HPG-COOH). HPG-COOH-coated FNDs (FND-HPG-COOHs) were found to exhibit excellent dispersibility under physiological conditions despite the thinness of the 5 nm HPG-COOH layer. Biotinylated FND-HPG-COOHs specifically captured avidin molecules in the absence of nonspecific protein adsorption. Moreover, we demonstrated that FND-HPG-COOHs conjugated with antibodies can be used to selectively target integrins in fixed HeLa cells. In addition, intracellular temperature changes were measured via optically detected magnetic resonance using FND-HPG-COOHs conjugated with mitochondrial localization signal peptides. Our one-pot synthetic method will encourage the broad use of FNDs among molecular and cellular biologists and pave the way for extensive biological and biomedical applications of FNDs.


Subject(s)
Fluorescent Dyes/chemistry , Nanodiamonds/chemistry , HeLa Cells , Humans
7.
Sci Rep ; 8(1): 5463, 2018 04 03.
Article in English | MEDLINE | ID: mdl-29615648

ABSTRACT

The development of sensors to estimate physical properties, and their temporal and spatial variation, has been a central driving force in scientific breakthroughs. In recent years, nanosensors based on quantum measurements, such as nitrogen-vacancy centres (NVCs) in nanodiamonds, have been attracting much attention as ultrastable, sensitive, accurate and versatile physical sensors for quantitative cellular measurements. However, the nanodiamonds currently available for use as sensors have diameters of several tens of nanometres, much larger than the usual size of a protein. Therefore, their actual applications remain limited. Here we show that NVCs in an aggregation of 5-nm-sized detonation-synthesized nanodiamond treated by Krüger's surface reduction (termed DND-OH) retains the same characteristics as observed in larger diamonds. We show that the negative charge at the NVC are stabilized, have a relatively long T2 spin relaxation time of up to 4 µs, and are applicable to thermosensing, one-degree orientation determination and nanometric super-resolution imaging. Our results clearly demonstrate the significant potential of DND-OH as a physical sensor. Thus, DND-OH will raise new possibilities for spatiotemporal monitoring of live cells and dynamic biomolecules in individual cells at single-molecule resolution.

8.
Sci Rep ; 7(1): 5943, 2017 07 19.
Article in English | MEDLINE | ID: mdl-28724971

ABSTRACT

Computational protein design has advanced very rapidly over the last decade, but there remain few examples of artificial proteins with direct medical applications. This study describes a new artificial ß-trefoil lectin that recognises Burkitt's lymphoma cells, and which was designed with the intention of finding a basis for novel cancer treatments or diagnostics. The new protein, called "Mitsuba", is based on the structure of the natural shellfish lectin MytiLec-1, a member of a small lectin family that uses unique sequence motifs to bind α-D-galactose. The three subdomains of MytiLec-1 each carry one galactose binding site, and the 149-residue protein forms a tight dimer in solution. Mitsuba (meaning "three-leaf" in Japanese) was created by symmetry constraining the structure of a MytiLec-1 subunit, resulting in a 150-residue sequence that contains three identical tandem repeats. Mitsuba-1 was expressed and crystallised to confirm the X-ray structure matches the predicted model. Mitsuba-1 recognises cancer cells that express globotriose (Galα(1,4)Galß(1,4)Glc) on the surface, but the cytotoxicity is abolished.


Subject(s)
Lectins/chemistry , Neoplasms/metabolism , Neoplasms/pathology , Trefoil Factors/chemistry , Amino Acid Sequence , Animals , Binding Sites , Cell Death , Cell Line, Tumor , Computational Biology , Crystallography, X-Ray , Hemagglutination , Humans , Lectins/metabolism , Molecular Weight , Protein Domains , Protein Multimerization , Rabbits , Sugars/metabolism
9.
Sci Rep ; 6: 28344, 2016 06 20.
Article in English | MEDLINE | ID: mdl-27321048

ABSTRACT

MytiLec is a lectin, isolated from bivalves, with cytotoxic activity against cancer cell lines that express globotriaosyl ceramide, Galα(1,4)Galß(1,4)Glcα1-Cer, on the cell surface. Functional analysis shows that the protein binds to the disaccharide melibiose, Galα(1,6)Glc, and the trisaccharide globotriose, Galα(1,4)Galß(1,4)Glc. Recombinant MytiLec expressed in bacteria showed the same haemagglutinating and cytotoxic activity against Burkitt's lymphoma (Raji) cells as the native form. The crystal structure has been determined to atomic resolution, in the presence and absence of ligands, showing the protein to be a member of the ß-trefoil family, but with a mode of ligand binding unique to a small group of related trefoil lectins. Each of the three pseudo-equivalent binding sites within the monomer shows ligand binding, and the protein forms a tight dimer in solution. An engineered monomer mutant lost all cytotoxic activity against Raji cells, but retained some haemagglutination activity, showing that the quaternary structure of the protein is important for its cellular effects.


Subject(s)
Burkitt Lymphoma/metabolism , Lectins/chemistry , Mytilus/chemistry , Trisaccharides/chemistry , Animals , Binding Sites , Burkitt Lymphoma/drug therapy , Calorimetry , Cell Line, Tumor , Cell Survival , Cloning, Molecular , Crystallography, X-Ray , Hemagglutinins/chemistry , Humans , Ligands , Models, Molecular , Protein Engineering , Protein Structure, Quaternary , Protein Structure, Secondary , Recombinant Proteins/chemistry , Ultracentrifugation
10.
Mar Drugs ; 13(12): 7377-89, 2015 Dec 14.
Article in English | MEDLINE | ID: mdl-26694420

ABSTRACT

MytiLec; a novel lectin isolated from the Mediterranean mussel (Mytilus galloprovincialis); shows strong binding affinity to globotriose (Gb3: Galα1-4Galß1-4Glc). MytiLec revealed ß-trefoil folding as also found in the ricin B-subunit type (R-type) lectin family, although the amino acid sequences were quite different. Classification of R-type lectin family members therefore needs to be based on conformation as well as on primary structure. MytiLec specifically killed Burkitt's lymphoma Ramos cells, which express Gb3. Fluorescein-labeling assay revealed that MytiLec was incorporated inside the cells. MytiLec treatment of Ramos cells resulted in activation of both classical MAPK/ extracellular signal-regulated kinase and extracellular signal-regulated kinase (MEK-ERK) and stress-activated (p38 kinase and JNK) Mitogen-activated protein kinases (MAPK) pathways. In the cells, MytiLec treatment triggered expression of tumor necrosis factor (TNF)-α (a ligand of death receptor-dependent apoptosis) and activation of mitochondria-controlling caspase-9 (initiator caspase) and caspase-3 (activator caspase). Experiments using the specific MEK inhibitor U0126 showed that MytiLec-induced phosphorylation of the MEK-ERK pathway up-regulated expression of the cyclin-dependent kinase inhibitor p21, leading to cell cycle arrest and TNF-α production. Activation of caspase-3 by MytiLec appeared to be regulated by multiple different pathways. Our findings, taken together, indicate that the novel R-type lectin MytiLec initiates programmed cell death of Burkitt's lymphoma cells through multiple pathways (MAPK cascade, death receptor signaling; caspase activation) based on interaction of the lectin with Gb3-containing glycosphingolipid-enriched microdomains on the cell surface.


Subject(s)
Apoptosis/drug effects , Burkitt Lymphoma/drug therapy , Lectins/pharmacology , Animals , Burkitt Lymphoma/pathology , Butadienes/pharmacology , Caspase 3/metabolism , Caspase 9/metabolism , Cell Line, Tumor , Humans , K562 Cells , Lectins/isolation & purification , Mitogen-Activated Protein Kinases/metabolism , Mytilus/metabolism , Nitriles/pharmacology , Trisaccharides/metabolism , Tumor Necrosis Factor-alpha/metabolism
11.
Proc Natl Acad Sci U S A ; 111(42): 15102-7, 2014 Oct 21.
Article in English | MEDLINE | ID: mdl-25288768

ABSTRACT

The modular structure of many protein families, such as ß-propeller proteins, strongly implies that duplication played an important role in their evolution, leading to highly symmetrical intermediate forms. Previous attempts to create perfectly symmetrical propeller proteins have failed, however. We have therefore developed a new and rapid computational approach to design such proteins. As a test case, we have created a sixfold symmetrical ß-propeller protein and experimentally validated the structure using X-ray crystallography. Each blade consists of 42 residues. Proteins carrying 2-10 identical blades were also expressed and purified. Two or three tandem blades assemble to recreate the highly stable sixfold symmetrical architecture, consistent with the duplication and fusion theory. The other proteins produce different monodisperse complexes, up to 42 blades (180 kDa) in size, which self-assemble according to simple symmetry rules. Our procedure is suitable for creating nano-building blocks from different protein templates of desired symmetry.


Subject(s)
Mycobacterium tuberculosis/enzymology , Protein Engineering , Protein Structure, Secondary , Proteins/chemistry , Amino Acid Sequence , Biophysics , Circular Dichroism , Crystallography, X-Ray , Light , Models, Molecular , Models, Theoretical , Molecular Sequence Data , Nanotechnology , Scattering, Radiation , Sequence Homology, Amino Acid , Software , Spectrometry, Mass, Electrospray Ionization , Ultracentrifugation
SELECTION OF CITATIONS
SEARCH DETAIL
...