Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 953, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38296961

ABSTRACT

Autophagy is primarily activated by cellular stress, such as starvation or mitochondrial damage. However, stress-independent autophagy is activated by unclear mechanisms in several cell types, such as thymic epithelial cells (TECs). Here we report that the mitochondrial protein, C15ORF48, is a critical inducer of stress-independent autophagy. Mechanistically, C15ORF48 reduces the mitochondrial membrane potential and lowers intracellular ATP levels, thereby activating AMP-activated protein kinase and its downstream Unc-51-like kinase 1. Interestingly, C15ORF48-dependent induction of autophagy upregulates intracellular glutathione levels, promoting cell survival by reducing oxidative stress. Mice deficient in C15orf48 show a reduction in stress-independent autophagy in TECs, but not in typical starvation-induced autophagy in skeletal muscles. Moreover, C15orf48-/- mice develop autoimmunity, which is consistent with the fact that the stress-independent autophagy in TECs is crucial for the thymic self-tolerance. These results suggest that C15ORF48 induces stress-independent autophagy, thereby regulating oxidative stress and self-tolerance.


Subject(s)
Autoimmunity , Mitochondrial Proteins , Mice , Animals , Mitochondrial Proteins/metabolism , Oxidative Stress , Autophagy , Epithelial Cells/metabolism , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism
2.
FASEB J ; 35(11): e21996, 2021 11.
Article in English | MEDLINE | ID: mdl-34679187

ABSTRACT

Vestigial-like family member 3 (VGLL3), a member of the vestigial-like family, is a cofactor of the TEA-domain-containing transcription factor (TEAD). Although elevation in VGLL3 expression is associated with inflammatory diseases, such as inflammatory sarcomas and autoimmune diseases, the molecular mechanisms underlying VGLL3-mediated inflammation remain largely unknown. In this study, we analyzed the relationship between elevated VGLL3 expression and the levels of NF-κB, a transcription factor that plays a pivotal role in inflammation. NF-κB was found to be activated in a cell line stably expressing VGLL3. Mechanistically, VGLL3 was shown to promote the expression and secretion of the potent NF-κB-activating cytokine interleukin (IL)-1α, probably through its association with TEADs. As VGLL3 is a target of transforming growth factor ß (TGF-ß) signaling, we analyzed IL-1α induction upon TGF-ß stimulation. TGF-ß stimulation was observed to induce IL-1α secretion and NF-κB activation, and VGLL3 was associated with this phenomenon. The TGF-ß transcription factors Smad3 and Smad4 were shown to be necessary for inducing VGLL3 and IL-1α expression. Lastly, we found that VGLL3-dependent IL-1α secretion is involved in constitutive NF-κB activation in highly malignant breast cancer cells. Collectively, the findings suggested that VGLL3 expression and TGF-ß stimulation activate the inflammatory response by inducing IL-1α secretion.


Subject(s)
Inflammation/metabolism , Interleukin-1alpha/immunology , NF-kappa B/immunology , Transcription Factors/immunology , Transforming Growth Factor beta/immunology , A549 Cells , Fibroblasts , Humans , MCF-7 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...