Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38870528

ABSTRACT

OBJECTIVES: To evaluate magnetic susceptibility artefacts produced by orthodontic wires on MRI and the influence of wire properties and MRI image sequences on the magnitude of the artefact. METHODS: Arch form orthodontic wires [four stainless steels (SS), one cobalt chromium (CC) alloy, 13 titanium (Ti) alloys] were embedded in a polyester phantom, and scanned using a 1.5-T superconducting magnet scanner with an eight-channel phased-array coil. All wires were scanned with T1-weighted spin echo (SE) and gradient echo (GRE) sequences according to the American Society for Testing and Materials (ASTM) F2119-07 standard. The phantom was also scanned other eight sequences. Artefacts were measured using the ASTM F2119-07 definition and OsiriX software. Artefact volume was analyzed according to metal composition, wire length, number of wires, wire thickness, and imaging sequence as factors. RESULTS: With SE/GRE, black/white artefacts volumes from all SS wires were significantly larger than those produced by CC and Ti wires (P < 0.01). With the GRE, the black artefacts volume was highest with the SS wires. With the SE, the black artefacts volume was small, whereas white artefacts were noticeable. The cranio-caudal extent of the artefacts was significantly longer with SS wires (P < 0.01). Although a direct relationship of wire length, number of wires and wire thickness with artefact volume was noted, these factors did not influence artefact extension in the cranio-caudal direction. CONCLUSIONS: Ferromagnetic/paramagnetic orthodontic wires create artefacts due to local alteration of magnetic field homogeneity. The SS-type wires produced the largest artefacts followed by CC and Ti.

2.
Sci Rep ; 13(1): 13796, 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37652921

ABSTRACT

Over the past century, understanding the nature of shock compression of condensed matter has been a major topic. About 20 years ago, a femtosecond laser emerged as a new shock-driver. Unlike conventional shock waves, a femtosecond laser-driven shock wave creates unique microstructures in materials. Therefore, the properties of this shock wave may be different from those of conventional shock waves. However, the lattice behaviour under femtosecond laser-driven shock compression has never been elucidated. Here we report the ultrafast lattice behaviour in iron shocked by direct irradiation of a femtosecond laser pulse, diagnosed using X-ray free electron laser diffraction. We found that the initial compression state caused by the femtosecond laser-driven shock wave is the same as that caused by conventional shock waves. We also found, for the first time experimentally, the temporal deviation of peaks of stress and strain waves predicted theoretically. Furthermore, the existence of a plastic wave peak between the stress and strain wave peaks is a new finding that has not been predicted even theoretically. Our findings will open up new avenues for designing novel materials that combine strength and toughness in a trade-off relationship.

3.
Sci Rep ; 12(1): 2237, 2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35140299

ABSTRACT

This study evaluates phase transformation kinetics under ultrafast cooling using femtosecond X-ray diffraction for the operand measurements of the dislocation densities in Fe-0.1 mass% C-2.0 mass% Mn martensitic steel. To identify the phase transformation mechanism from austenite (γ) to martensite (α'), we used an X-ray free-electron laser and ultrafast heating and cooling techniques. A maximum cooling rate of 4.0 × 103 °C s-1 was achieved using a gas spraying technique, which is applied immediately after ultrafast heating of the sample to 1200 °C at a rate of 1.2 × 104 °C s-1. The cooling rate was sufficient to avoid bainitic transformation, and the transformation during ultrafast cooling was successfully observed. Our results showed that the cooling rate affected the dislocation density of the γ phase at high temperatures, resulting in the formation of a retained γ owing to ultrafast cooling. It was discovered that Fe-0.1 mass% C-2.0 mass% Mn martensitic steels may be in an intermediate phase during the phase transformation from face-centered-cubic γ to body-centered-cubic α' during ultrafast cooling and that lattice softening occurred in carbon steel immediately above the martensitic-transformation starting temperature. These findings will be beneficial in the study, development, and industrial utilization of functional steels.

4.
Sci Rep ; 9(1): 11241, 2019 Aug 02.
Article in English | MEDLINE | ID: mdl-31375725

ABSTRACT

In this study, phase transformation kinetics was directly evaluated using a femtosecond X-ray diffraction technique for operand measurements of the dislocation densities and carbon concentrations in Fe-0.1mass%C martensitic steel. To identify the reverse transformation mechanism from α' to γ, we used an X-ray free-electron laser and ultrafast heating. A maximum heating rate of 104 °C/s, which is sufficient to avoid diffusive reversion, was achieved, and the reverse transformation during ultrafast heating was successfully observed. Our results demonstrated that a fine microstructure formed because of a phase transformation in which the dislocation density and carbon concentrations remained high owing to ultrafast heating. Fe-C martensitic steels were also found to undergo a massive reverse transformation during ultrafast heating. The formation of a fine microstructure by a simple manufacturing process, without rare elements such as Ti, Nb, or Mo, can be expected. This study will help further the development of functional steels.

SELECTION OF CITATIONS
SEARCH DETAIL
...