Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 14: 1211825, 2023.
Article in English | MEDLINE | ID: mdl-37692425

ABSTRACT

The entomopathogenic fungus Beauveria bassiana is used commercially as a microbial insecticides against a wide range of agricultural insect pests. Some strains of B. bassiana protect the plants from pathogens, but the underlying mechanisms are largely unknown. Here, we found that prophylactic sprays of commercial bioinsecticide Botanigard on cucumber, tomato, and strawberry plants suppressed the severity of economically damaging powdery mildews. On leaf surfaces, hyphal elongation and spore germination of cucumber powdery mildew, Podosphaera xanthii, were inhibited, but B. bassiana strain GHA, the active ingredient isolated from Botanigard, only inhibited hyphal elongation but had no effect on spore germination of P. xanthii. In addition, strain GHA suppressed powdery mildew symptoms locally, not systemically. Treatment with Botanigard and strain GHA induced a hypersensitive response (HR)-like cell death in epidermal cells of the cucumber leaves in a concentration-dependent manner and inhibited penetration by P. xanthii. Transcriptome analysis and mass spectrometry revealed that GHA induced expression of salicylic acid (SA)-related genes, and treatment with Botanigard and GHA increased the SA level in the cucumber leaves. In NahG-transgenic tomato plants, which do not accumulate SA, the biocontrol effect of tomato powdery mildew by GHA was significantly reduced. These results suggested that B. bassiana GHA induces SA accumulation, leading to the induction of HR-like cell death against powdery mildew and subsequent suppression of fungal penetration. Thus, Botanigard has the potential to control both insect pests and plant diseases.

2.
Microbiologyopen ; 2(6): 997-1009, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24311557

ABSTRACT

The rhizosphere microbial community in a hydroponics system with multiple parallel mineralization (MPM) can potentially suppress root-borne diseases. This study focused on revealing the biological nature of the suppression against Fusarium wilt disease, which is caused by the fungus Fusarium oxysporum, and describing the factors that may influence the fungal pathogen in the MPM system. We demonstrated that the rhizosphere microbiota that developed in the MPM system could suppress Fusarium wilt disease under in vitro and greenhouse conditions. The microbiological characteristics of the MPM system were able to control the population dynamics of F. oxysporum, but did not eradicate the fungal pathogen. The roles of the microbiological agents underlying the disease suppression and the magnitude of the disease suppression in the MPM system appear to depend on the microbial density. F. oxysporum that survived in the MPM system formed chlamydospores when exposed to the rhizosphere microbiota. These results suggest that the microbiota suppresses proliferation of F. oxysporum by controlling the pathogen's morphogenesis and by developing an ecosystem that permits coexistence with F. oxysporum.


Subject(s)
Bacterial Physiological Phenomena , Biota , Fusarium/growth & development , Microbial Interactions , Plant Diseases/prevention & control , Rhizosphere , Soil Microbiology , Solanum lycopersicum/microbiology , Molecular Sequence Data , Plant Diseases/microbiology , Sequence Analysis, DNA
3.
J Plant Physiol ; 166(4): 435-41, 2009 Mar 01.
Article in English | MEDLINE | ID: mdl-18778876

ABSTRACT

Rhodes grass (Chloris gayana) is one of the most important warm-season forage grasses. It is cultivated in tropical and subtropical parts of the world and is mostly used for grazing and hay production. We have established a particle-bombardment transformation protocol for rhodes grass using multiple-shoot clumps (MSCs) as the target tissue. A vector pAHC25 containing a herbicide-resistance gene (bar) together with the beta-glucuronidase (GUS) gene was used in transformation experiments. The most efficient recovery of bialaphos-resistant tissue was achieved when the bombarded MSCs were first cultured for 15 d on bialaphos-free medium before being subjected to selection pressure. The resistant tissues regenerated transgenic plants that displayed GUS gene expression. Under optimized conditions, 251 target pieces yielded 46 transgenic plants from 4 independent transgenic lines.


Subject(s)
Biolistics/instrumentation , Biolistics/methods , Plant Shoots/metabolism , Poaceae/metabolism , Transformation, Genetic , DNA, Plant/metabolism , Embryonic Development , Glucuronidase/metabolism , Organ Specificity , Plants, Genetically Modified , Poaceae/embryology , Tissue Culture Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...