Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med Biol ; 67(11)2022 05 19.
Article in English | MEDLINE | ID: mdl-35421853

ABSTRACT

Objective. To investigate the potential of using a single quadrupole magnet with a high magnetic field gradient to create planar minibeams suitable for clinical applications of proton minibeam radiation therapy.Approach. We performed Monte Carlo simulations involving single quadrupole Halbach cylinders in a passively scattered nozzle in clinical use for proton therapy. Pencil beams produced by the nozzle of 10-15 mm initial diameters and particle range of âˆ¼10-20 cm in water were focused by magnets with field gradients of 225-350 T m-1and cylinder lengths of 80-110 mm to produce very narrow elongated (planar) beamlets. The corresponding dose distributions were scored in a water phantom. Composite minibeam dose distributions composed from three beamlets were created by laterally shifting copies of the single beamlet distribution to either side of a central beamlet. Modulated beamlets (with 18-30 mm nominal central SOBP) and corresponding composite dose distributions were created in a similar manner. Collimated minibeams were also compared with beams focused using one magnet/particle range combination.Main results. The focusing magnets produced planar beamlets with minimum lateral FWHM of ∼1.1-1.6 mm. Dose distributions composed from three unmodulated beamlets showed a high degree of proximal spatial fractionation and a homogeneous target dose. Maximal peak-to-valley dose ratios (PVDR) for the unmodulated beams ranged from 32 to 324, and composite modulated beam showed maximal PVDR ranging from 32 to 102 and SOBPs with good target dose coverage.Significance.Advantages of the high-gradient magnets include the ability to focus beams with phase space parameters that reflect beams in operation today, and post-waist particle divergence allowing larger beamlet separations and thus larger PVDR. Our results suggest that high gradient quadrupole magnets could be useful to focus beams of moderate emittance in clinical proton therapy.


Subject(s)
Proton Therapy , Monte Carlo Method , Phantoms, Imaging , Proton Therapy/methods , Protons , Radiotherapy Dosage , Water
2.
Phys Med Biol ; 64(11): 115024, 2019 05 31.
Article in English | MEDLINE | ID: mdl-30844767

ABSTRACT

We performed experiments using a triplet of quadrupole permanent magnets to focus protons and compared their dose distributions with unfocused collimated beams using energies and field sizes typically employed in proton radiosurgery. Experiments were performed in a clinical treatment room wherein small-diameter proton beams were focused by a magnet triplet placed immediately upstream of a water tank. The magnets consisted of segments of Sm2Co17 rare-earth permanent magnetic material adhered into Halbach cylinders with nominal field gradients of 100, 150, 200, and 250 T m-1. Unmodulated beams with initial diameters of 3 mm-20 mm were delivered using a single scattering system with nominal energies of 127 and 157 MeV (respective ranges of ~10 cm and 15 cm in water), commonly used for proton radiosurgery at our institution. For comparison, small-diameter unfocused collimated beams were similarly delivered. Transverse and depth dose distributions were measured using radiochromic film and a diode detector, respectively, and compared between the focused and unfocused beams (UNF). The focused beams produced low-eccentricity beam spots (defined by the 80% dose contour) at Bragg depth, with full width at 80% maximum dose values ranging from 3.8 to 7.6 mm. When initial focused beam diameters were larger than matching unfocused diameters (19 of 29 cases), the focused beams peak-to-entrance dose ratios were 13% to 73% larger than UNF. In addition, in 17 of these cases the efficiency of dose delivery to the target was 1.3× to 3.3× larger. Both peak-to-entrance dose ratios and efficiency tended to increase with initial beam diameter, while efficiency also tended to increase with magnet gradient. These experimental results are consistent with our previous Monte Carlo (MC) studies and suggest that a triplet of quadrupole Halbach cylinders could be clinically useful for irradiating small-field radiosurgical targets with fewer beams, lower entrance dose, and shorter treatment times.


Subject(s)
Magnetic Phenomena , Protons , Radiosurgery/methods , Monte Carlo Method , Water
3.
J Appl Clin Med Phys ; 18(5): 315-324, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28719019

ABSTRACT

As technology continues to develop, external beam radiation therapy is being employed, with increased conformity, to treat smaller targets. As this occurs, the dosimetry methods and tools employed to quantify these fields for treatment also have to evolve to provide increased spatial resolution. The team at the University of Wollongong has developed a pixelated silicon detector prototype known as the dose magnifying glass (DMG) for real-time small-field metrology. This device has been tested in photon fields and IMRT. The purpose of this work was to conduct the initial performance tests with proton radiation, using beam energies and modulations typically associated with proton radiosurgery. Depth dose and lateral beam profiles were measured and compared with those collected using a PTW parallel-plate ionization chamber, a PTW proton-specific dosimetry diode, EBT3 Gafchromic film, and Monte Carlo simulations. Measurements of the depth dose profile yielded good agreement when compared with Monte Carlo, diode and ionization chamber. Bragg peak location was measured accurately by the DMG by scanning along the depth dose profile, and the relative response of the DMG at the center of modulation was within 2.5% of that for the PTW dosimetry diode for all energy and modulation combinations tested. Real-time beam profile measurements of a 5 mm 127 MeV proton beam also yielded FWHM and FW90 within ±1 channel (0.1 mm) of the Monte Carlo and EBT3 film data across all depths tested. The DMG tested here proved to be a useful device at measuring depth dose profiles in proton therapy with a stable response across the entire proton spread-out Bragg peak. In addition, the linear array of small sensitive volumes allowed for accurate point and high spatial resolution one-dimensional profile measurements of small radiation fields in real time to be completed with minimal impact from partial volume averaging.


Subject(s)
Proton Therapy/instrumentation , Radiosurgery/instrumentation , Equipment Design , Monte Carlo Method , Radiometry/instrumentation , Radiosurgery/methods , Silicon
4.
J Appl Clin Med Phys ; 16(5): 381­388, 2015 09 08.
Article in English | MEDLINE | ID: mdl-26699329

ABSTRACT

The purpose of this study was to evaluate the effectiveness of full three-dimensional (3D) gamma algorithm for spot scanning proton fields, also referred to as pencil beam scanning (PBS) fields. The difference between the full 3D gamma algorithm and a simplified two-dimensional (2D) version was presented. Both 3D and 2D gamma algorithms are used for dose evaluations of clinical proton PBS fields. The 3D gamma algorithm was implemented in an in-house software program without resorting to 2D interpolations perpendicular to the proton beams at the depths of measurement. Comparison between calculated and measured dose points was car-ried out directly using Euclidian distance in 3D space and the dose difference as a fourth dimension. Note that this 3D algorithm faithfully implemented the original concept proposed by Low et al. (1998) who described gamma criterion using 3D Euclidian distance and dose difference. Patient-specific proton PBS plans are separated into two categories, depending on their optimization method: single-field optimization (SFO) or multifield optimized (MFO). A total of 195 measurements were performed for 58 SFO proton fields. A MFO proton plan with four fields was also calculated and measured, although not used for treatment. Typically three dif-ferent depths were selected from each field for measurements. Each measurement was analyzed by both 3D and 2D gamma algorithms. The resultant 3D and 2D gamma passing rates are then compared and analyzed. Comparison between 3D and 2D gamma passing rates of SFO fields showed that 3D algorithm does show higher passing rates than its 2D counterpart toward the distal end, while little difference is observed at depths away from the distal end. Similar phenomenon in the lateral penumbra was well documented in photon radiation therapy, and in fact brought about the concept of gamma criterion. Although 2D gamma algorithm has been shown to suffice in addressing dose comparisons in lateral penumbra for photon intensity-modulation radiation therapy (IMRT) plans, results here showed that a full 3D algorithm is required for proton dose comparisons due to the existence of Bragg peaks and distal penumbra. A MFO proton plan with four fields was also measured and analyzed. Sharp dose gradients exist in MFO proton fields, both in the middle of the modulation and toward the most distal layers. Decreased 2D gamma passing rates at locations of high dose gradient are again observed as in the SFO fields. Results confirmed that a full 3D algorithm for gamma criterion is needed for proton PBS plan's dose comparisons. The 3D gamma algorithm is implemented by an in-house software program. Patient-specific proton PBS plans are measured and analyzed using both 3D and 2D gamma algorithms. For measurements performed at depths with large dose gradients along the beam direction, gamma comparison passing rates using 2D algorithm is lower than those obtained with the full 3D algorithm.


Subject(s)
Algorithms , Gamma Rays , Neoplasms/radiotherapy , Proton Therapy/instrumentation , Proton Therapy/standards , Quality Assurance, Health Care/standards , Radiotherapy Planning, Computer-Assisted/standards , Humans , Quality Control , Radiotherapy Dosage , Software
5.
J Appl Clin Med Phys ; 16(6): 51-64, 2015 11 08.
Article in English | MEDLINE | ID: mdl-26699554

ABSTRACT

The small fields and sharp gradients typically encountered in proton radiosurgery require high spatial resolution dosimetric measurements, especially below 1-2 cm diameters. Radiochromic film provides high resolution, but requires postprocessing and special handling. Promising alternatives are diode detectors with small sensitive volumes (SV) that are capable of high resolution and real-time dose acquisition. In this study we evaluated the PTW PR60020 proton dosimetry diode using radiation fields and beam energies relevant to radiosurgery applications. Energies of 127 and 157 MeV (9.7 to 15 cm range) and initial diameters of 8, 10, 12, and 20mm were delivered using single-stage scattering and four modulations (0, 15, 30, and 60mm) to a water tank in our treatment room. Depth dose and beam profile data were compared with PTW Markus N23343 ionization chamber, EBT2 Gafchromic film, and Monte Carlo simulations. Transverse dose profiles were measured using the diode in "edge-on" orientation or EBT2 film. Diode response was linear with respect to dose, uniform with dose rate, and showed an orientation-dependent (i.e., beam parallel to, or perpendicular to, detector axis) response of less than 1%. Diodevs. Markus depth-dose profiles, as well as Markus relative dose ratio vs. simulated dose-weighted average lineal energy plots, suggest that any LET-dependent diode response is negligible from particle entrance up to the very distal portion of the SOBP for the energies tested. Finally, while not possible with the ionization chamber due to partial volume effects, accurate diode depth-dose measurements of 8, 10, and 12 mm diameter beams were obtained compared to Monte Carlo simulations. Because of the small SV that allows measurements without partial volume effects and the capability of submillimeter resolution (in edge-on orientation) that is crucial for small fields and high-dose gradients (e.g., penumbra, distal edge), as well as negligible LET dependence over nearly the full the SOBP, the PTW proton diode proved to be a useful high-resolution, real-time metrology device for small proton field radiation measurements such as would be encountered in radiosurgery applications.


Subject(s)
Proton Therapy/methods , Radiometry/instrumentation , Radiosurgery/methods , Computer Simulation , Humans , Linear Energy Transfer , Linear Models , Monte Carlo Method , Proton Therapy/instrumentation , Radiosurgery/instrumentation , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Planning, Computer-Assisted/statistics & numerical data , Water , X-Ray Film
6.
J Appl Clin Med Phys ; 16(3): 5402, 2015 May 08.
Article in English | MEDLINE | ID: mdl-26103499

ABSTRACT

Radiographic film dosimetry suffers from its energy dependence in proton dosimetry. This study sought to develop a method of measuring proton beams by the film and to evaluate film response to proton beams for the constancy check of depth dose (DD). It also evaluated the film for profile measurements. To achieve this goal, from DDs measured by film and ion chamber (IC), calibration factors (ratios of dose measured by IC to film responses) as a function of depth in a phantom were obtained. These factors imply variable slopes (with proton energy and depth) of linear characteristic curves that relate film response to dose. We derived a calibration method that enables utilization of the factors for acquisition of dose from film density measured at later dates by adapting to a potentially altered processor condition. To test this model, the characteristic curve was obtained by using EDR2 film and in-phantom film dosimetry in parallel with a 149.65 MeV proton beam, using the method. An additional validation of the model was performed by concurrent film and IC measurement perpendicular to the beam at various depths. Beam profile measurements by the film were also evaluated at the center of beam modulation. In order to interpret and ascertain the film dosimetry, Monte Carlos simulation of the beam was performed, calculating the proton fluence spectrum along depths and off-axis distances. By multiplying respective stopping powers to the spectrum, doses to film and water were calculated. The ratio of film dose to water dose was evaluated. Results are as follows. The characteristic curve proved the assumed linearity. The measured DD approached that of IC, but near the end of the spread-out Bragg peak (SOBP), a spurious peak was observed due to the mismatch of distal edge between the calibration and measurement films. The width of SOBP and the proximal edge were both reproducible within a maximum of 5mm; the distal edge was reproducible within 1 mm. At 5 cm depth, the dose was reproducible within 10%. These large discrepancies were identified to have been contributed by film processor uncertainty across a layer of film and the misalignment of film edge to the frontal phantom surface. The deviations could drop from 5 to 2 mm in SOBP and from 10% to 4.5% at 5 cm depth in a well-controlled processor condition(i.e., warm up). In addition to the validation of the calibration method done by the DD measurements, the concurrent film and IC measurement independently validated the model by showing the constancy of depth-dependent calibration factors. For profile measurement, the film showed good agreement with ion chamber measurement. In agreement with the experimental findings, computationally obtained ratio of film dose to water dose assisted understanding of the trend of the film response by revealing relatively large and small variances of the response for DD and beam profile measurements, respectively. Conclusions are as follows. For proton beams, radiographic film proved to offer accurate beam profile measurements. The adaptive calibration method proposed in this study was validated. Using the method, film dosimetry could offer reasonably accurate DD constancy checks, when provided with a well-controlled processor condition. Although the processor warming up can promote a uniform processing across a single layer of the film, the processing remains as a challenge.


Subject(s)
Algorithms , Film Dosimetry/instrumentation , Film Dosimetry/methods , Models, Statistical , Radiotherapy, High-Energy/instrumentation , Radiotherapy, High-Energy/methods , Computer Simulation , Equipment Design , Equipment Failure Analysis , Protons , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...