Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Anal Biochem ; 564-565: 21-31, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30292477

ABSTRACT

Angiogenesis is a highly regulated process orchestrated, in large part, by the vascular endothelial growth factor-A (VEGF-A) system of ligands and receptors. Considerable effort has been invested in finding optimal ways to modulate VEGF-A activity to treat disease, however, the mechanisms by which the various components interact remain poorly understood. This is in part because of the difficulty of analyzing the various interactions in an intercomparable manner. In the present study, we established conditions to allow for the detailed characterization of the molecular interactions between VEGF and its receptors and the co-receptor NRP-1 using surface plasmon resonance (SPR). We found that VEGF dissociated 25-times faster from its major signaling receptor, VEGF receptor-2 (VEGFR-2) than from its "decoy" receptor, VEGF receptor-1 (VEGFR-1). Using a systematic approach, we obtained kinetic parameters for each individual interaction under a consistent set of experimental conditions allowing for comparison between various receptors. The set of quantitative kinetic parameters and experimental conditions reported herein will provide valuable tools for developing comprehensive models of the VEGF system.


Subject(s)
Neuropilins/metabolism , Surface Plasmon Resonance/methods , Vascular Endothelial Growth Factor A/metabolism , Animals , Humans , Kinetics , Neuropilin-1/metabolism , Signal Transduction
2.
J Cell Physiol ; 231(9): 2026-39, 2016 09.
Article in English | MEDLINE | ID: mdl-26773314

ABSTRACT

Vascular endothelial growth factor A (VEGF) drives endothelial cell maintenance and angiogenesis. Endothelial cell behavior is altered by the stiffness of the substrate the cells are attached to suggesting that VEGF activity might be influenced by the mechanical cellular environment. We hypothesized that extracellular matrix (ECM) stiffness modifies VEGF-cell-matrix tethering leading to altered VEGF processing and signaling. We analyzed VEGF binding, internalization, and signaling as a function of substrate stiffness in endothelial cells cultured on fibronectin (Fn) linked polyacrylamide gels. Cell produced extracellular matrices on the softest substrates were least capable of binding VEGF, but the cells exhibited enhanced VEGF internalization and signaling compared to cells on all other substrates. Inhibiting VEGF-matrix binding with sucrose octasulfate decreased cell-internalization of VEGF and, inversely, heparin pre-treatment to enhance Fn-matrix binding of VEGF increased cell-internalization of VEGF regardless of matrix stiffness. ß1 integrins, which connect cells to Fn, modulated VEGF uptake in a stiffness dependent fashion. Cells on hard surfaces showed decreased levels of activated ß1 and inhibition of ß1 integrin resulted in a greater proportional decrease in VEGF internalization than in cells on softer matrices. Extracellular matrix binding is necessary for VEGF internalization. Stiffness modifies the coordinated actions of VEGF-matrix binding and ß1 integrin binding/activation, which together are critical for VEGF internalization. This study provides insight into how the microenvironment may influence tissue regeneration and response to injury and disease. J. Cell. Physiol. 231: 2026-2039, 2016. © 2016 Wiley Periodicals, Inc.


Subject(s)
Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Extracellular Matrix/metabolism , Signal Transduction , Vascular Endothelial Growth Factor A/metabolism , Animals , Cattle , Cell Movement , Cells, Cultured , Fibronectins/metabolism , Humans
3.
J Biol Chem ; 290(26): 16451-62, 2015 Jun 26.
Article in English | MEDLINE | ID: mdl-25979342

ABSTRACT

Angiogenesis is a highly regulated process orchestrated by the VEGF system. Heparin/heparan sulfate proteoglycans and neuropilin-1 (NRP-1) have been identified as co-receptors, yet the mechanisms of action have not been fully defined. In the present study, we characterized molecular interactions between receptors and co-receptors, using surface plasmon resonance and in vitro binding assays. Additionally, we demonstrate that these binding events are relevant to VEGF activity within endothelial cells. We defined interactions and structural requirements for heparin/HS interactions with VEGF receptor (VEGFR)-1, NRP-1, and VEGF165 in complex with VEGFR-2 and NRP-1. We demonstrate that these structural requirements are distinct for each interaction. We further show that VEGF165, VEGFR-2, and monomeric NRP-1 bind weakly to heparin alone yet show synergistic binding to heparin when presented together in various combinations. This synergistic binding appears to translate to alterations in VEGF signaling in endothelial cells. We found that soluble NRP-1 increases VEGF binding and activation of VEGFR-2 and ERK1/2 in endothelial cells and that these effects require sulfated HS. These data suggest that the presence of HS/heparin and NRP-1 may dictate the specific receptor type activated by VEGF and ultimately determine the biological output of the system. The ability of co-receptors to fine-tune VEGF responsiveness suggests the possibility that VEGF-mediated angiogenesis can be selectively stimulated or inhibited by targeting HS/heparin and NRP-1.


Subject(s)
Heparin/metabolism , Neuropilin-1/metabolism , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-1/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , Animals , Endothelial Cells/chemistry , Endothelial Cells/metabolism , Heparan Sulfate Proteoglycans/metabolism , Humans , Kinetics , Mice , Neuropilin-1/chemistry , Neuropilin-1/genetics , Protein Binding , Signal Transduction , Vascular Endothelial Growth Factor A/chemistry , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor Receptor-1/chemistry , Vascular Endothelial Growth Factor Receptor-1/genetics , Vascular Endothelial Growth Factor Receptor-2/chemistry , Vascular Endothelial Growth Factor Receptor-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL