Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem ; 21(3): 748-65, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23273606

ABSTRACT

Sodium glucose co-transporter 1 (SGLT1) plays a dominant role in the absorption of glucose in the gut and is considered a promising target in the development of therapeutic options for postprandial hyperglycemia. Previously, we reported potent and selective SGLT1 inhibitors 1 and 2 showing efficacy in oral carbohydrate tolerance tests in diabetic rat models. In a pharmacokinetic (PK) study of 2, excessive systemic exposure to metabolites of 2 was observed, presumably due to the high permeability of its aglycone (2a). To further improve SGLT1 inhibitory activity and reduce aglycone permeability, a series of 4-benzyl-5-isopropyl-1H-pyrazol-3-yl ß-D-glycopyranoside derivatives bearing novel hydrophilic substitution groups on the phenyl ring were synthesized and their inhibitory activity toward SGLTs was evaluated. Optimized compound 14c showed an improved profile satisfying both higher activity and lower permeability of its aglycone (22f) compared with initial leads 1 and 2. Moreover, the superior efficacy of 14c in various carbohydrate tolerance tests in diabetic rat models was confirmed compared with acarbose, an α-glucosidase inhibitor (α-GI) widely used in the clinic.


Subject(s)
Drug Design , Glycosides/pharmacology , Sodium-Glucose Transporter 1/antagonists & inhibitors , Dose-Response Relationship, Drug , Glycosides/chemical synthesis , Glycosides/chemistry , Humans , Hydrophobic and Hydrophilic Interactions , Molecular Structure , Structure-Activity Relationship
2.
Bioorg Med Chem ; 20(22): 6598-612, 2012 Nov 15.
Article in English | MEDLINE | ID: mdl-23062824

ABSTRACT

Sodium glucose co-transporter 1 (SGLT1) plays a dominant role in the absorption of glucose in the gut and is considered a promising target in the development of treatments for postprandial hyperglycemia. A series of 4-benzyl-1H-pyrazol-3-yl ß-d-glucopyranoside derivatives have been synthesized, and its inhibitory activity toward SGLTs has been evaluated. By altering the substitution groups at the 5-position of the pyrazole ring, and every position of the phenyl ring, we studied the structure-activity relationship (SAR) profiles and identified a series of potent and selective SGLT1 inhibitors. Representative derivatives showed a dose-dependent suppressing effect on the escalation of blood glucose levels in oral mixed carbohydrate tolerance tests (OCTT) in streptozotocin-nicotinamide-induced diabetic rats (NA-STZ rats).


Subject(s)
Glucosides/chemistry , Hypoglycemic Agents/chemical synthesis , Sodium-Glucose Transporter 1/antagonists & inhibitors , Animals , Blood Glucose/analysis , Crystallography, X-Ray , Diabetes Mellitus, Experimental/drug therapy , Glucosides/chemical synthesis , Glucosides/therapeutic use , Humans , Hyperglycemia/drug therapy , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/therapeutic use , Molecular Conformation , Rats , Sodium-Glucose Transporter 1/metabolism , Sodium-Glucose Transporter 2/metabolism , Sodium-Glucose Transporter 2 Inhibitors , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...