Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 26(5): 3795-3799, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38251768

ABSTRACT

An accurate method is proposed to deal with such nonadiabatic transitions as those energetically inaccessible, namely, classically forbidden transitions. This is formulated by using the corresponding Zhu-Nakamura formulas and finding the optimal paths in the classically forbidden tunneling regions that maximize the overall transition probabilities. This can be done for both the nonadiabatic tunneling type (so-called normal case in electron transfer) in which two diabatic potentials have opposite signs of slopes and the Landau-Zener type (inverted case) in which two diabatic potentials have the same sign of slopes. The method is numerically demonstrated to be useful for clarifying chemical and biological dynamics.

2.
Phys Chem Chem Phys ; 18(38): 26786-26795, 2016 Sep 29.
Article in English | MEDLINE | ID: mdl-27711497

ABSTRACT

A new laser-control scenario of unidirectional π-electron rotations in a low-symmetry aromatic ring molecule having no degenerate excited states is proposed. This scenario is based on dynamic Stark shifts of two relevant excited states using two linearly polarized stationary lasers. Each laser is set to selectively interact with one of the two electronic states, the lower and higher excited states are shifted up and down with the same rate, respectively, and the two excited states become degenerate at their midpoint. One of the four control parameters of the two lasers, i.e. two frequencies and two intensities, determines the values of all the other parameters. The direction of π-electron rotations, clockwise or counter-clockwise rotation, depends on the sign of the relative phase of the two lasers at the initial time. An analytical expression for the time-dependent expectation value of the rotational angular momentum operator is derived using the rotating wave approximation (RWA). The control scenario depends on the initial condition of the electronic states. The control scenario with the ground state as the initial condition was applied to toluene molecules. The derived time-dependent angular momentum consists of a train of unidirectional angular momentum pulses. The validity of the RWA was checked by numerically solving the time-dependent Schrödinger equation. The simulation results suggest an experimental realization of the induction of unidirectional π-electron rotations in low-symmetry aromatic ring molecules without using any intricate quantum-optimal control procedure. This may open up an effective generation method of ring currents and current-induced magnetic fields in biomolecules such as amino acids having aromatic ring molecules for searching their interactions.

3.
Phys Chem Chem Phys ; 18(17): 11972-85, 2016 04 28.
Article in English | MEDLINE | ID: mdl-27067383

ABSTRACT

Various quantum mechanical effects such as nonadiabatic transitions, quantum mechanical tunneling and coherence play crucial roles in a variety of chemical and biological systems. In this paper, we propose a method to incorporate tunneling effects into the molecular dynamics (MD) method, which is purely based on classical mechanics. Caustics, which define the boundary between classically allowed and forbidden regions, are detected along classical trajectories and the optimal tunneling path with minimum action is determined by starting from each appropriate caustic. The real phase associated with tunneling can also be estimated. Numerical demonstration with use of a simple collinear chemical reaction O + HCl → OH + Cl is presented in order to help the reader to well comprehend the method proposed here. Generalization to the on-the-fly ab initio version is rather straightforward. By treating the nonadiabatic transitions at conical intersections by the Zhu-Nakamura theory, new semiclassical MD methods can be developed.

4.
Phys Chem Chem Phys ; 18(3): 1570-7, 2016 Jan 21.
Article in English | MEDLINE | ID: mdl-26670839

ABSTRACT

The electron angular momentum is a fundamental quantity of high-symmetry aromatic ring molecules and finds many applications in chemistry such as molecular spectroscopy. The stationary angular momentum or unidirectional rotation of π electrons is generated by the excitation of a degenerated electronic excited state by a circularly-polarized photon. For low-symmetry aromatic ring molecules having non-degenerate states, such as chiral aromatic ring molecules, on the other hand, whether stationary angular momentum can be generated or not is uncertain and has not been clarified so far. We have found by both theoretical treatments and quantum optimal control (QOC) simulations that a stationary angular momentum can be generated even from a low-symmetry aromatic ring molecule. The generation mechanism can be explained in terms of the creation of a dressed-state, and the maximum angular momentum is generated by the dressed state with an equal contribution from the relevant two excited states in a simple three-electronic state model. The dressed state is formed by inducing selective nonresonant transitions between the ground and each excited state by two lasers with the same frequency but having different polarization directions. The selective excitation can be carried out by arranging each photon-polarization vector orthogonal to the electronic transition moment of the other transition. We have successfully analyzed the results of the QOC simulations of (P)-2,2'-biphenol of axial chirality in terms of the analytically determined optimal laser fields. The present findings may open up new types of chemical dynamics and spectroscopy by utilizing strong stationary ring currents and current-induced magnetic fields, which are created at a local site of large compounds such as biomolecules.

5.
J Phys Chem Lett ; 5(11): 2044-9, 2014 Jun 05.
Article in English | MEDLINE | ID: mdl-26273893

ABSTRACT

Controlling π-electrons with delocalized character is one of the fundamental issues in femtosecond and attosecond chemistry. Localization of π-electron rotation by using laser pulses is expected to play an essential role in nanoscience. The π-electron rotation created at a selected aromatic ring of a single molecule induces a local intense electromagnetic field, which is a new type of ultrafast optical control functioning. We propose a quantum localization of coherent π-electron angular momentum in (P)-2,2'-biphenol, which is a simple, covalently linked chiral aromatic ring chain molecule. The localization considered here consists of sequential two steps: the first step is to localize the π-electron angular momentum at a selected ring of the two benzene rings, and the other is to maintain the localization. Optimal control theory was used for obtaining the optimized electric fields of linearly polarized laser pulses to realize the localization. The optimal electric fields and the resultant coherent electronic dynamics are analyzed.

6.
J Phys Chem A ; 117(2): 333-41, 2013 Jan 17.
Article in English | MEDLINE | ID: mdl-23231683

ABSTRACT

Instantaneous (laser-field-dependent) potential energy curves leading to neutral fragmentations of methane were calculated at several laser intensities from 1.4 × 10(13) to 1.2 × 10(14) W/cm(2) (from 1.0 × 10(10) to 3.0 × 10(10) V/m) using ab initio molecular orbital (MO) methods to validate the observation of neutral fragmentations induced by intense femtosecond IR pulses (Kong et al. J. Chem. Phys. 2006, 125, 133320). Two fragmentation paths, CH(2) + 2H and CH(2) + H(2), in (1)T(2) superexcited states that are located in the energy range of 12-16 eV were considered as the reaction paths because these states are responsible for Jahn-Teller distortion opening up reaction paths during ultrashort pulses. As field intensity increased, the low-lying excited (1)A(1) states originated from the Jahn-Teller (1)T(2) states were substantially stabilized along the neutral-fragment path CH(4) → CH(2) + 2H and were located below the ionization threshold. On the other hand, the low-lying excited (1)B(1) states, which also originate from the Jahn-Teller (1)T(2) states, were embedded on the ionized state along the dissociation path to CH(2) + H(2). This indicates that ionic fragments, rather than neutral ones, are produced along the CH(2) + H(2) path. The computational results support neutral fragmentations through superexcited states proposed by Kong et al.

7.
J Am Chem Soc ; 134(35): 14279-82, 2012 Sep 05.
Article in English | MEDLINE | ID: mdl-22889209

ABSTRACT

Nonplanar chiral aromatic molecules are candidates for use as building blocks of multidimensional switching devices because the π electrons can generate ring currents with a variety of directions. We employed (P)-2,2'-biphenol because four patterns of π-electron rotations along the two phenol rings are possible and theoretically determine how quantum switching of the π-electron rotations can be realized. We found that each rotational pattern can be driven by a coherent excitation of two electronic states under two conditions: one is the symmetry of the electronic states and the other is their relative phase. On the basis of the results of quantum dynamics simulations, we propose a quantum control method for sequential switching among the four rotational patterns that can be performed by using ultrashort overlapped pump and dump pulses with properly selected relative phases and photon polarization directions. The results serve as a theoretical basis for the design of confined ultrafast switching of ring currents of nonplanar molecules and further current-induced magnetic fluxes of more sophisticated systems.

8.
J Biol Phys ; 38(4): 543-71, 2012 Sep.
Article in English | MEDLINE | ID: mdl-24615219

ABSTRACT

Herein, we propose a modified version of the Wako-Saitô-Muñoz-Eaton (WSME) model. The proposed model introduces an empirical temperature parameter for the hypothetical structural units (i.e., foldons) in proteins to include site-dependent thermodynamic behavior. The thermodynamics for both our proposed model and the original WSME model were investigated. For a system with beta-hairpin topology, a mathematical treatment (contact-pair treatment) to facilitate the calculation of its partition function was developed. The results show that the proposed model provides better insight into the site-dependent thermodynamic behavior of the system, compared with the original WSME model. From this site-dependent point of view, the relationship between probe-dependent experimental results and model's thermodynamic predictions can be explained. The model allows for suggesting a general principle to identify foldon behavior. We also find that the backbone hydrogen bonds may play a role of structural constraints in modulating the cooperative system. Thus, our study may contribute to the understanding of the fundamental principles for the thermodynamics of protein folding.


Subject(s)
Models, Molecular , Protein Folding , Calorimetry , Peptides/chemistry , Protein Structure, Secondary , Temperature , Thermodynamics
9.
Phys Rev Lett ; 104(18): 180501, 2010 May 07.
Article in English | MEDLINE | ID: mdl-20482157

ABSTRACT

Wave functions of electrically neutral systems can be used as information carriers to replace real charges in the present Si-based circuit, whose further integration will result in a possible disaster where current leakage is unavoidable with insulators thinned to atomic levels. We have experimentally demonstrated a new logic gate based on the temporal evolution of a wave function. An optically tailored vibrational wave packet in the iodine molecule implements four- and eight-element discrete Fourier transform with arbitrary real and imaginary inputs. The evolution time is 145 fs, which is shorter than the typical clock period of the current fastest Si-based computers by 3 orders of magnitudes.

10.
J Phys Chem A ; 114(21): 6171-87, 2010 Jun 03.
Article in English | MEDLINE | ID: mdl-20455528

ABSTRACT

Theoretical ideas are proposed for laser control of chemical dynamics. There are the following three elementary processes in chemical dynamics: (i) motion of the wave packet on a single adiabatic potential energy surface, (ii) excitation/de-excitation or pump/dump of wave packet, and (iii) nonadiabatic transitions at conical intersections of potential energy surfaces. A variety of chemical dynamics can be controlled, if we can control these three elementary processes as we desire. For (i) we have formulated the semiclassical guided optimal control theory, which can be applied to multidimensional real systems. The quadratic or periodic frequency chirping method can achieve process (ii) with high efficiency close to 100%. Concerning process (iii) mentioned above, the directed momentum method, in which a predetermined momentum vector is given to the initial wave packet, makes it possible to enhance the desired transitions at conical intersections. In addition to these three processes, the intriguing phenomenon of complete reflection in the nonadiabatic-tunneling-type of potential curve crossing can also be used to control a certain class of chemical dynamics. The basic ideas and theoretical formulations are provided for the above-mentioned processes. To demonstrate the effectiveness of these controlling methods, numerical examples are shown by taking the following processes: (a) vibrational photoisomerization of HCN, (b) selective and complete excitation of the fine structure levels of K and Cs atoms, (c) photoconversion of cyclohexadiene to hexatriene, and (d) photodissociation of OHCl to O + HCl.

11.
J Phys Chem A ; 114(9): 3087-95, 2010 Mar 11.
Article in English | MEDLINE | ID: mdl-20043684

ABSTRACT

Superexcited states (SESs) of oxygen molecules and their neutral dissociation processes have been studied both experimentally and theoretically using intense femtosecond laser. We find that at the laser intensity of approximately 2 x 10(14) W/cm(2), ultrashort laser pulse causes neutral dissociation of oxygen molecule by way of SESs. The dissociation products are the excited neutral oxygen atoms, which are observed through fluorescence spectroscopy. Laser power dependence of the fluorescence intensity shows that each molecule effectively absorbs an average of ten laser photons. The total energy absorbed is sufficient to stimulate the molecule to many of the SESs. The effect is equivalent to single photon excitation in the extreme-ultraviolet (XUV) region by synchrotron radiation (SR). Morse potential energy curves (PECs) are constructed for the SESs of O(2) molecules. In light of the PECs, predissociation mechanism is proposed for the neutral dissociation. Quasi-classical trajectory (QCT) calculations show that the predissociation time is as short as 100 fs, which is consistent with our experimental measurement using ultrafast pump-probe technique.

12.
Phys Rev Lett ; 97(5): 053001, 2006 Aug 04.
Article in English | MEDLINE | ID: mdl-17026097

ABSTRACT

A method of exact state-selective spectroscopy is introduced, based on quantum control through four specific short laser pulses. The exact conditions for the two pairs of ultrafast pulses are set by the feedback control for selective excitation to one specific resonance state while the other state is destructively interfered as the shadow pair, leading to a state-selective spectrum.

13.
J Chem Phys ; 124(11): 114110, 2006 Mar 21.
Article in English | MEDLINE | ID: mdl-16555877

ABSTRACT

We numerically propose a way to perform quantum computations by combining an ensemble of molecular states and weak laser pulses. A logical input state is expressed as a superposition state (a wave packet) of molecular states, which is initially prepared by a designed femtosecond laser pulse. The free propagation of the wave packet for a specified time interval leads to the specified change in the relative phases among the molecular basis states, which corresponds to a computational result. The computational results are retrieved by means of quantum interferometry. Numerical tests are implemented in the vibrational states of the B state of I2 employing controlled-NOT gate, and 2 and 3 qubits Fourier transforms. All the steps involved in the computational scheme, i.e., the initial preparation, gate operation, and detection steps, are achieved with extremely high precision.

SELECTION OF CITATIONS
SEARCH DETAIL
...