Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
FEMS Microbiol Lett ; 3712024 Jan 09.
Article in English | MEDLINE | ID: mdl-38305094

ABSTRACT

Rice blast fungus (Pyricularia oryzae) is a heterothallic ascomycete that causes the most destructive disease in cultivated rice worldwide. This fungus reproduces sexually and asexually, and its mating type is determined by the MAT1 locus, MAT1-1 or MAT1-2. Interestingly, most rice-infecting field isolates show a loss of female fertility, but the MAT1 locus is highly conserved in female-sterile isolates. In this study, we performed a functional analysis of MAT1 using the CRISPR/Cas9 system in female- and male-fertile isolates and female-sterile (male-fertile) isolates. Consistent with a previous report, MAT1 was essential for sexual reproduction but not for asexual reproduction. Meanwhile, deletion mutants of MAT1-1-1, MAT1-1-2, and MAT1-1-3 exhibited phenotypes different from those of other previously described isolates, suggesting that the function of MAT1-1 genes and/or their target genes in sexual reproduction differs among strains or isolates. The MAT1 genes, excluding MAT1-2-6, retained their functions even in female-sterile isolates, and deletion mutants lead to loss or reduction of male fertility. Although MAT1 deletion did not affect microconidia (spermatia) production, microconidia derived from the mutants could not induce perithecia formation. These results indicated that MAT1 is required for microconidia-mediated male fertility in addition to female fertility in P. oryzae .


Subject(s)
Ascomycota , Genes, Mating Type, Fungal , Genes, Mating Type, Fungal/genetics , Fertility/genetics , Ascomycota/genetics , Reproduction/genetics , Spores, Fungal
2.
iScience ; 26(7): 107020, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37416480

ABSTRACT

Although sexual reproduction is widespread in eukaryotes, some fungal species can only reproduce asexually. In the rice blast fungus Pyricularia (Magnaporthe) oryzae, several isolates from the region of origin retain mating ability, but most isolates are female sterile. Therefore, female fertility may have been lost during its spread from the origin. Here, we show that functional mutations of Pro1, a global transcriptional regulator of mating-related genes in filamentous fungi, is one cause of loss of female fertility in this fungus. We identified the mutation of Pro1 by backcrossing analysis between female-fertile and female-sterile isolates. The dysfunctional Pro1 did not affect the infection processes but conidial release was increased. Furthermore, various mutations in Pro1 were detected in geographically distant P. oryzae, including pandemic isolates of wheat blast fungus. These results provide the first evidence that loss of female fertility may be advantageous to the life cycle of some plant pathogenic fungi.

3.
Appl Environ Microbiol ; 87(2)2021 01 04.
Article in English | MEDLINE | ID: mdl-33158893

ABSTRACT

Bakanae disease, caused by Fusarium fujikuroi, is an economically important seed-borne disease of rice. F. fujikuroi is horizontally transmitted to rice flowers and vertically transmitted to the next generation via seeds. The fungus induces typical symptoms such as abnormal tissue elongation and etiolation. Sanitation of seed farms and seed disinfection are the only effective means to control bakanae disease at present; however, the efficacy of these methods is often insufficient. Therefore, alternative and innovative control methods are necessary. We developed a novel method for applying nonpathogenic fusaria as biocontrol agents by spraying spore suspensions onto rice flowers to reduce the incidence of seed-borne bakanae. We visualized the interaction between Fusarium commune W5, a nonpathogenic fusarium, and Fusarium fujikuroi using transformants expressing two different fluorescent proteins on/in rice plants. W5 inhibited hyphal extension of F. fujikuroi on/in rice flowers and seedlings, possibly by competing with the pathogen, and survived on/in rice seeds for at least 6 months.IMPORTANCE We demonstrated that a spray treatment of rice flowers with the spores of nonpathogenic fusaria mimicked the disease cycle of the seed-borne bakanae pathogen Fusarium fujikuroi and effectively suppressed the disease. Spray treatment of nonpathogenic fusaria reduced the degree of pathogen invasion of rice flowers and vertical transmission of the pathogen to the next plant generation via seeds, thereby controlling the bakanae disease. The most promising isolate, F. commune W5, colonized seeds and seedlings via treated flowers and successfully inhibited pathogen invasion, suggesting that competition with the pathogen was the mode of action. Seed-borne diseases are often controlled by seed treatment with chemical fungicides. Establishing an alternative method is a pressing issue from the perspectives of limiting fungicide resistance and increasing food security. This work provides a potential solution to these issues using a novel application technique to treat rice flowers with biocontrol agents.


Subject(s)
Flowers/microbiology , Fusarium , Oryza/microbiology , Pest Control, Biological , Plant Diseases/prevention & control , Spores, Fungal
4.
Front Microbiol ; 11: 593784, 2020.
Article in English | MEDLINE | ID: mdl-33193269

ABSTRACT

Various viruses infect Magnaporthe oryzae (syn. Pyricularia oryzae), which is a well-studied fungus that causes rice blast disease. Most research has focused on the discovery of new viruses and the hypovirulence-associated traits conferred by them. Therefore, the diversity and prevalence of viruses in wild fungal populations have not been explored. We conducted a comprehensive screening of M. oryzae mycoviruses from various regions in Japan using double-stranded RNA (dsRNA) electrophoresis and RT-PCR assays. We detected three mycoviruses, Magnaporthe oryzae virus 2 (MoV2), Magnaporthe oryzae chrysovirus 1 (MoCV1), and Magnaporthe oryzae partitivirus 1 (MoPV1), among 127 of the 194 M. oryzae strains screened. The most prevalent virus was MoPV1 (58.8%), which often co-infected in a single fungal strain together with MoV2 or MoCV1. MoV2 and MoCV1 were found in 22.7 and 10.8% of strains, respectively, and they were usually distributed in different regions so that mixed-infection with these two mycoviruses was extremely rare. The predominance of MoPV1 in M. oryzae is supported by significant negative values from neutrality tests, which indicate that the population size of MoPV1 tends to increase. Population genetic analyses revealed high nucleotide diversity and the presence of phylogenetically diverse subpopulations among the MoV2 isolates. This was not the case for MoPV1. Furthermore, studies of a virus-cured M. oryzae strain revealed that MoV2 does not cause any abnormalities or symptoms in its host. However, a leaf sheath inoculation assay showed that its presence slightly increased the speed of mycelial growth, compared with virus-free mycelia. These results demonstrate that M. oryzae in Japan harbors diverse dsRNA mycovirus communities with wide variations in their population structures among different viruses.

5.
Virology ; 535: 241-254, 2019 09.
Article in English | MEDLINE | ID: mdl-31344549

ABSTRACT

A Japanese isolate of Magnaporthe oryzae is infected by Magnaporthe oryzae chrysovirus 1-D (MoCV1-D), which is classified in cluster II of the family Chrysoviridae. The genome of MoCV1-D consists of five dsRNAs. dsRNAs 1-4 show high identity with those of related MoCV1 viruses, whereas dsRNA5 shows relatively low identity and is sometimes deleted during virus propagation. MoCV1-D causes growth inhibition of its host fungus, and the protein encoded by its dsRNA4 impairs cell growth when expressed in yeast cells. It also causes abnormal pigmentation and colony albinization, and we showed that these phenotypes are associated with reduced accumulation of the melanin biosynthesis intermediate scylatone. MoCV1-D exhibits multiform viral structural proteins during prolonged culture. The original host isolate is co-infected with MoCV1-D, a victorivirus, and a partitivirus, and these mycoviruses are detected in cell-free supernatant fractions after prolonged liquid culturing. Hyphal fusion experiments demonstrated that MoCV1-D is transmissible via anastomosis.


Subject(s)
Ascomycota/growth & development , Ascomycota/virology , Fungal Viruses/growth & development , RNA Viruses/growth & development , RNA, Viral/genetics , Viral Structural Proteins/metabolism , Ascomycota/metabolism , Fungal Viruses/genetics , Melanins/biosynthesis , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA Viruses/genetics , RNA, Double-Stranded/genetics , Viral Structural Proteins/genetics
6.
J Pestic Sci ; 44(1): 41-47, 2019 Feb 20.
Article in English | MEDLINE | ID: mdl-30820172

ABSTRACT

Ultrasound, which refers to frequencies above the audible limit of human hearing, is a candidate for inducing resistance to pathogens in plants. We revealed that aerial ultrasound of 40.5 kHz could induce disease resistance in tomatoes and rice when the plants were irradiated with ultrasound of ca. 100 dB for 2 weeks during nursery season and reduced the incidence of Fusarium wilt and blast diseases, respectively, when plants were inoculated with pathogen 0 or 1 week after terminating irradiation. Disease control efficacy was also observed with ultrasound at frequencies of 19.8 and 28.9 kHz. However, cabbage yellows and powdery mildew on lettuce were not suppressed by ultrasound irradiation. No significant positive or negative effect on growth was observed in tomato and rice plants. RT-qPCR showed that the expression of PR1a involved in the salicylic acid (SA) signaling pathway was upregulated in the ultrasound-irradiated tomato.

7.
Mol Plant Pathol ; 19(1): 180-190, 2018 01.
Article in English | MEDLINE | ID: mdl-27868376

ABSTRACT

Plant viruses in the genus Carlavirus include more than 65 members. Plants infected with carlaviruses exhibit various symptoms, including leaf malformation and plant stunting. Cysteine-rich protein (CRP) encoded by carlaviruses has been reported to be a pathogenicity determinant. Carlavirus CRPs contain two motifs in their central part: a nuclear localization signal (NLS) and a zinc finger motif (ZF). In addition to these two conserved motifs, carlavirus CRPs possess highly divergent, N-terminal, 34 amino acid residues with unknown function. In this study, to analyse the role of these distinct domains, we tested six carlavirus CRPs for their RNA silencing suppressor activity, ability to enhance the pathogenicity of a heterologous virus and effects on virus accumulation levels. Although all six tested carlavirus CRPs showed RNA silencing suppressor activity at similar levels, symptoms induced by the Potato virus X (PVX) heterogeneous system exhibited two different patterns: leaf malformation and whole-plant stunting. The expression of each carlavirus CRP enhanced PVX accumulation levels, which were not correlated with symptom patterns. PVX-expressing CRP with mutations in either NLS or ZF did not induce symptoms, suggesting that both motifs play critical roles in symptom expression. Further analysis using chimeric CRPs, in which the N-terminal region was replaced with the corresponding region of another CRP, suggested that the N-terminal region of carlavirus CRPs determined the exhibited symptom types. The up-regulation of a plant gene upp-L, which has been reported in a previous study, was also observed in this study; however, the expression level was not responsible for symptom types.


Subject(s)
Carlavirus/metabolism , Plant Diseases/virology , Viral Proteins/metabolism , Amino Acid Sequence , Carlavirus/pathogenicity , Nuclear Localization Signals/metabolism , Plant Leaves/virology , Potexvirus/metabolism , RNA Interference , RNA, Viral/metabolism , Species Specificity , Nicotiana/virology , Viral Proteins/chemistry
8.
Sci Rep ; 7(1): 9697, 2017 08 29.
Article in English | MEDLINE | ID: mdl-28852173

ABSTRACT

The rice blast fungus Magnaporthe oryzae differentiates a specialized infection structure called an appressorium to invade rice cells. In this report, we show that CBP1, which encodes a chitin-deacetylase, is involved in the induction phase of appressorium differentiation. We demonstrate that the enzymatic activity of Cbp1 is critical for appressorium formation. M. oryzae has six CDA homologues in addition to Cbp1, but none of these are indispensable for appressorium formation. We observed chitosan localization at the fungal cell wall using OGA488. This observation suggests that Cbp1-catalysed conversion of chitin into chitosan occurs at the cell wall of germ tubes during appressorium differentiation by M. oryzae. Taken together, our results provide evidence that the chitin deacetylase activity of Cbp1 is necessary for appressorium formation.


Subject(s)
Amidohydrolases/metabolism , Magnaporthe/enzymology , Oryza/microbiology , Plant Diseases/microbiology , Amidohydrolases/chemistry , Amidohydrolases/genetics , Amino Acid Sequence , Chitin/metabolism , Enzyme Activation , Genetic Complementation Test , Host-Pathogen Interactions , Magnaporthe/metabolism , Mutation
9.
Fungal Genet Biol ; 98: 46-51, 2017 01.
Article in English | MEDLINE | ID: mdl-27919652

ABSTRACT

A small chromosome in reference isolate 4287 of F. oxysporum f. sp. lycopersici (Fol) has been designated as a 'pathogenicity chromosome' because it carries several pathogenicity related genes such as the Secreted In Xylem (SIX) genes. Sequence assembly of small chromosomes in other isolates, based on a reference genome template, is difficult because of karyotype variation among isolates and a high number of sequences associated with transposable elements. These factors often result in misassembly of sequences, making it unclear whether other isolates possess the same pathogenicity chromosome harboring SIX genes as in the reference isolate. To overcome this difficulty, single chromosome sequencing after Contour-clamped Homogeneous Electric Field (CHEF) separation of chromosomes was performed, followed by de novo assembly of sequences. The assembled sequences of individual chromosomes were consistent with results of probing gels of CHEF separated chromosomes with SIX genes. Individual chromosome sequencing revealed that several SIX genes are located on a single small chromosome in two pathogenic forms of F. oxysporum, beyond the reference isolate 4287, and in the cabbage yellows fungus F. oxysporum f. sp. conglutinans. The particular combination of SIX genes on each small chromosome varied. Moreover, not all SIX genes were found on small chromosomes; depending on the isolate, some were on big chromosomes. This suggests that recombination of chromosomes and/or translocation of SIX genes may occur frequently. Our method improves sequence comparison of small chromosomes among isolates.


Subject(s)
Chromosomes, Fungal/genetics , Fungal Proteins/genetics , Fusarium/genetics , Plant Diseases/microbiology , Fusarium/pathogenicity , Karyotyping , Solanum lycopersicum/microbiology , Phylogeny , Plant Diseases/genetics
10.
Planta ; 245(1): 221-226, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27838842

ABSTRACT

MAIN CONCLUSION: A LAMP-mediated, simple and rapid method for sex identification in spinach was developed. Nutrient compositional analysis showed a higher iron content in male than female plants. Spinach (Spinacia oleracea L.) is a dioecious plant with its sex determined by the XY system. Male and female floral organs differ morphologically, but plants do not differ in the vegetative stage before flowering. PCR with Y chromosome markers has been used to determine the sex of dioecious plants before flowering. In this study, we developed a genotype-specific loop-mediated isothermal amplification (LAMP) for sex identification of individual vegetative-stage spinach plants, using primers designed for the genomic region flanked by male-specific markers. LAMP could specifically detect spinach males. The method was further modified to omit DNA purification and use just an aliquot of crude leaf extract homogenized in water. We compared the nutrient composition of males and females, finding higher amounts of iron in the males. Our method could therefore be used for rapidly discriminating male plants in the field, which is useful for efficient hybrid breeding.


Subject(s)
Nucleic Acid Amplification Techniques/methods , Spinacia oleracea/growth & development , Spinacia oleracea/genetics , DNA, Plant/isolation & purification , Iron/metabolism , Spectrometry, Fluorescence
11.
Arch Virol ; 161(9): 2627-31, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27368994

ABSTRACT

The phytopathogenic fungus Alternaria spp. contains a variety of double-stranded RNA (dsRNA) elements of different sizes. Detailed analysis of next-generation sequencing data obtained using dsRNA purified from Alternaria arborescens, from which we had previously found Alternaria arborescens victorivirus 1, revealed the presence of another mycoviral-like dsRNA of approximately 2.5 kbp in length. When using the fungal mitochondrial genetic code, this dsRNA has a single open reading frame that potentially encodes an RNA-dependent RNA polymerase (RdRp) with significant to sequence similarity to those of viruses of the genus Mitovirus. Moreover, both the 5'- and 3'-untranslated regions have the potential to fold into stable stem-loop structures, which is characteristic of mitoviruses. Pairwise comparisons and phylogenetic analysis of the deduced amino acid sequences of RdRp indicated that the virus we identified in A. arborescens is a distinct member of the genus Mitovirus in the family Narnaviridae, designated as "Alternaria arborescens mitovirus 1" (AaMV1).


Subject(s)
Alternaria/virology , Fungal Viruses/genetics , Genome, Viral , Phylogeny
12.
Virus Res ; 223: 10-9, 2016 09 02.
Article in English | MEDLINE | ID: mdl-27329666

ABSTRACT

Magnaporthe oryzae chrysovirus 1 strain A (MoCV1-A) is the causal agent of growth repression and attenuated virulence (hypovirulence) of the rice blast fungus, Magnaporthe oryzae. We previously revealed that heterologous expression of the MoCV1-A ORF4 protein resulted in cytological damage to the yeasts Saccharomyces cerevisiae and Cryptococcus neoformans. Since the ORF4 protein is one of the components of viral particles, we evaluated the inhibitory effects of the purified virus particle against the conidial germination of M. oryzae, and confirmed its suppressive effects. Recombinant MoCV1-A ORF4 protein produced in Pichia pastoris was also effective for suppression of conidial germination of M. oryzae. MoCV1-A ORF4 protein sequence showed significant similarity to 6 related mycoviral proteins; Botrysphaeria dothidea chrysovirus 1, two Fusarium graminearum viruses, Fusarium oxysporum f. sp. dianthi mycovirus 1, Penicillium janczewski chrysovirus and Agaricus bisporus virus 1 in the Chrysoviridae family. Multiple alignments of the ORF4-related protein sequences showed that their central regions (210-591 aa in MoCV1-A ORF4) are relatively conserved. Indeed, yeast transformants expressing the conserved central region of MoCV1-A ORF4 protein (325-575 aa) showed similar impaired growth phenotypes as those observed in yeasts expressing the full-length MoCV1-A ORF4 protein. These data suggest that the mycovirus itself and its encoded viral protein can be useful as anti-fungal proteins to control rice blast disease caused by M. oryzae and other pathogenic fungi.


Subject(s)
Fungal Viruses/physiology , Germination , Oryza/growth & development , Oryza/virology , RNA Viruses/physiology , Viral Proteins/genetics , Viral Proteins/metabolism , Amino Acid Sequence , Biological Products , Gene Expression , Germination/drug effects , Protein Domains , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Viral Proteins/chemistry , Viral Proteins/pharmacology
13.
FEMS Microbiol Lett ; 363(14)2016 07.
Article in English | MEDLINE | ID: mdl-27190160

ABSTRACT

Emergence of races in Fusarium oxysporum f. sp. lycopersici (Fol) is caused by loss or mutation of at least one avirulence (AVR) gene. The product of AVR1 is a small protein (Avr1) secreted by Fol in tomato xylem sap during infection. This protein triggers Fol race 1 specific resistance (I) in tomato, indicating that AVR1 is an AVR gene. Deletion of AVR1 in race 1 resulted in the emergence of race 2, and an additional mutation in AVR2 generated race 3. Previously, we reported a new biotype of race 3, KoChi-1, in which AVR1 was truncated by a transposon Hormin, which suggested a new route to evolution of races in Fol However, to date no race 2 isolate carrying Hormin-truncated AVR1 has been reported. In this report, we describe such isolates, represented by Chiba-5, in which Hormin insertion occurred in AVR1 at a position different from that in KoChi-1. AVR1 truncation in both isolates resulted in production of defective Avr1 proteins. Chiba-5 and KoChi-1 belong to different phylogenetic clades, A1 and A2, respectively, suggesting that insertion of Hormin in AVR1 in Chiba-5 and KoChi-1 occurred as independent evolutionary events.


Subject(s)
DNA Transposable Elements , Fusarium/genetics , Mutation , Chromosome Mapping , Chromosomes, Fungal , Disease Resistance , Fusarium/classification , Fusarium/pathogenicity , Genetic Complementation Test , Genome, Fungal , Solanum lycopersicum/microbiology , Mutagenesis, Insertional , Phylogeny , Plant Diseases/microbiology , Virulence/genetics
14.
Arch Virol ; 161(6): 1701-4, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26923927

ABSTRACT

Strains of the phytopathogenic fungus Alternaria spp. have been found to contain a variety of double-stranded RNA (dsRNA) elements indicative of mycovirus infection. Here, we report the molecular characterization of a novel dsRNA mycovirus, Alternaria arborescens victorivirus 1 (AaVV1), from A. arborescens, the tomato pathotype of A. alternata. Using next-generation sequencing of dsRNA purified from an A. arborescens strain from the United States of America, we found that the AaVV1 genome is 5203 bp in length and contains two open reading frames (ORF1 and 2) that overlap at the tetranucleotide AUGA. Proteins encoded by ORF1 and ORF2 showed significant similarities to the coat protein (CP) and the RNA-dependent RNA polymerase (RdRp), respectively, of dsRNA mycoviruses of the genus Victorivirus. Pairwise comparisons and phylogenetic analysis of the deduced amino acid sequences of both CP and RdRp indicated that AaVV1 is a member of a distinct species of the genus Victorivirus in the family Totiviridae.


Subject(s)
Alternaria/virology , Fungal Viruses/genetics , Totiviridae/genetics , Alternaria/pathogenicity , Capsid Proteins/genetics , Fungal Viruses/classification , Fungal Viruses/isolation & purification , Genome, Viral , Open Reading Frames , Phylogeny , RNA, Viral/chemistry , RNA, Viral/genetics , RNA-Dependent RNA Polymerase/genetics , Totiviridae/classification , Totiviridae/isolation & purification
15.
Arch Virol ; 161(2): 317-26, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26547578

ABSTRACT

Magnaporthe oryzae chrysovirus 1 (MoCV1) is a mycovirus with a dsRNA genome that infects the rice blast fungus Magnaporthe oryzae and impairs its growth. To date, MoCV1 has only been found in Vietnamese isolates of M. oryzae, and the distribution of this virus in M. oryzae isolates from other parts of the world remains unknown. In this study, using a one-step reverse transcription PCR (RT-PCR) assay, we detected a MoCV1-related virus in M. oryzae in Japan (named MoCV1-AK) whose sequence shares considerable similarity with that of the MoCV1 Vietnamese isolate. To establish a system for a comprehensive survey of MoCV1 infection in the field, we developed a reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for direct detection of the virus. The sensitivity of the RT-LAMP assay was at least as high as that of the one-step RT-PCR assay. In addition, we detected MoCV1-AK in M. oryzae-infected oatmeal agar plates and lesions on rice leaves using the RT-LAMP assay without dsRNA extraction, by simple sampling with a toothpick. Preliminary screening of MoCV1 in Japanese M. oryzae isolates indicated that MoCV1 is currently distributed in rice fields in Japan. Our results provide a first example of the application of RT-LAMP for the detection of mycoviruses, which will accelerate surveys for mycovirus infection.


Subject(s)
Fungal Viruses/isolation & purification , Magnaporthe/virology , Nucleic Acid Amplification Techniques/methods , RNA Viruses/isolation & purification , Base Sequence , Cluster Analysis , Fungal Viruses/genetics , Japan , Magnaporthe/growth & development , Molecular Sequence Data , Oryza/microbiology , Phylogeny , RNA Viruses/genetics , RNA, Viral/genetics , Reverse Transcription , Sequence Analysis, DNA , Sequence Homology , Temperature , Time Factors
16.
Microbes Environ ; 29(2): 200-10, 2014.
Article in English | MEDLINE | ID: mdl-24909710

ABSTRACT

Fusarium oxysporum is an ascomycetous fungus that is well-known as a soilborne plant pathogen. In addition, a large population of nonpathogenic F. oxysporum (NPF) inhabits various environmental niches, including the phytosphere. To obtain an insight into the origin of plant pathogenic F. oxysporum, we focused on the tomato (Solanum lycopersicum) and its pathogenic F. oxysporum f. sp. lycopersici (FOL). We collected F. oxysporum from wild and transition Solanum spp. and modern cultivars of tomato in Chile, Ecuador, Peru, Mexico, Afghanistan, Italy, and Japan, evaluated the fungal isolates for pathogenicity, VCG, mating type, and distribution of SIX genes related to the pathogenicity of FOL, and constructed phylogenies based on ribosomal DNA intergenic spacer sequences. All F. oxysporum isolates sampled were genetically more diverse than FOL. They were not pathogenic to the tomato and did not carry SIX genes. Certain NPF isolates including those from wild Solanum spp. in Peru were grouped in FOL clades, whereas most of the NPF isolates were not. Our results suggested that the population of NPF isolates in FOL clades gave rise to FOL by gaining pathogenicity.


Subject(s)
Fusarium/genetics , Plant Diseases/microbiology , Solanum lycopersicum/microbiology , Base Sequence , DNA, Fungal/genetics , Fusarium/classification , Fusarium/isolation & purification , Genes, Mating Type, Fungal/genetics , Peru , Phylogeny , Sequence Analysis, DNA
17.
Virology ; 448: 265-73, 2014 Jan 05.
Article in English | MEDLINE | ID: mdl-24314657

ABSTRACT

A double-stranded RNA (dsRNA) mycovirus was found in isolate S-0412-II 2a of the rice blast fungus Magnaporthe oryzae. Sequence analysis of the five dsRNA segments (dsRNA1 through dsRNA5) revealed that this mycovirus is closely related to Magnaporthe oryzae chrysovirus 1-A (MoCV1-A), tentatively classified as a member of the Chrysoviridae; therefore, it was named Magnaporthe oryzae chrysovirus 1-B (MoCV1-B). Virus particles were spherical and composed of the ORF1, ORF3 and ORF4 proteins. MoCV1-B-infected isolate S-0412-II 2a showed a more severe impaired phenotype than the MoCV1-A-infected isolate. In a virus-cured isolate, normal growth was restored, implied that MoCV1-B could be involved in this observed phenotype. An unanticipated result was the occurrence of a fungal isolate lacking dsRNA5. The nonessential dsRNA5 had higher sequence identity (96%) with dsRNA5 of MoCV1-A than with the other dsRNA segments (71-79%), indicating that dsRNA5 could be a portable genomic element between MoCV1-A and MoCV1-B.


Subject(s)
Magnaporthe/growth & development , Magnaporthe/virology , Oryza/microbiology , Plant Diseases/microbiology , RNA Viruses/isolation & purification , RNA Viruses/physiology , Base Sequence , Molecular Sequence Data , Phylogeny , RNA Viruses/genetics , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism
18.
PLoS One ; 7(8): e44101, 2012.
Article in English | MEDLINE | ID: mdl-22952887

ABSTRACT

Compatible/incompatible interactions between the tomato wilt fungus Fusarium oxysporum f. sp. lycopersici (FOL) and tomato Solanum lycopersicum are controlled by three avirulence genes (AVR1-3) in FOL and the corresponding resistance genes (I-I3) in tomato. The three known races (1, 2 and 3) of FOL carry AVR genes in different combinations. The current model to explain the proposed order of mutations in AVR genes is: i) FOL race 2 emerged from race 1 by losing the AVR1 and thus avoiding host resistance mediated by I (the resistance gene corresponding to AVR1), and ii) race 3 emerged when race 2 sustained a point mutation in AVR2, allowing it to evade I2-mediated resistance of the host. Here, an alternative mechanism of mutation of AVR genes was determined by analyses of a race 3 isolate, KoChi-1, that we recovered from a Japanese tomato field in 2008. Although KoChi-1 is race 3, it has an AVR1 gene that is truncated by the transposon Hormin, which belongs to the hAT family. This provides evidence that mobile genetic elements may be one of the driving forces underlying race evolution. KoChi-1 transformants carrying a wild type AVR1 gene from race 1 lost pathogenicity to cultivars carrying I, showing that the truncated KoChi-1 avr1 is not functional. These results imply that KoChi-1 is a new race 3 biotype and propose an additional path for emergence of FOL races: Race 2 emerged from race 1 by transposon-insertion into AVR1, not by deletion of the AVR1 locus; then a point mutation in race 2 AVR2 resulted in emergence of race 3.


Subject(s)
DNA Transposable Elements/genetics , Fusarium/genetics , Fusarium/pathogenicity , Gene Silencing , Genes, Fungal/genetics , Mutagenesis, Insertional/genetics , Chromosomes, Fungal/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fusarium/isolation & purification , Gene Expression Regulation, Fungal , Genetic Complementation Test , Genetic Loci/genetics , Japan , Solanum lycopersicum/microbiology , Phylogeny , Transformation, Genetic , Virulence/genetics
19.
J Virol ; 86(15): 8287-95, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22623797

ABSTRACT

Magnaporthe oryzae chrysovirus 1 (MoCV1), which is associated with an impaired growth phenotype of its host fungus, harbors four major proteins: P130 (130 kDa), P70 (70 kDa), P65 (65 kDa), and P58 (58 kDa). N-terminal sequence analysis of each protein revealed that P130 was encoded by double-stranded RNA1 (dsRNA1) (open reading frame 1 [ORF1] 1,127 amino acids [aa]), P70 by dsRNA4 (ORF4; 812 aa), and P58 by dsRNA3 (ORF3; 799 aa), although the molecular masses of P58 and P70 were significantly smaller than those deduced for ORF3 and ORF4, respectively. P65 was a degraded form of P70. Full-size proteins of ORF3 (84 kDa) and ORF4 (85 kDa) were produced in Escherichia coli. Antisera against these recombinant proteins detected full-size proteins encoded by ORF3 and ORF4 in mycelia cultured for 9, 15, and 28 days, and the antisera also detected smaller degraded proteins, namely, P58, P70, and P65, in mycelia cultured for 28 days. These full-size proteins and P58 and P70 were also components of viral particles, indicating that MoCV1 particles might have at least two forms during vegetative growth of the host fungus. Expression of the ORF4 protein in Saccharomyces cerevisiae resulted in cytological changes, with a large central vacuole associated with these growth defects. MoCV1 has five dsRNA segments, as do two Fusarium graminearum viruses (FgV-ch9 and FgV2), and forms a separate clade with FgV-ch9, FgV2, Aspergillus mycovirus 1816 (AsV1816), and Agaricus bisporus virus 1 (AbV1) in the Chrysoviridae family on the basis of their RdRp protein sequences.


Subject(s)
Gene Expression , Magnaporthe/virology , RNA Viruses/genetics , Saccharomyces cerevisiae , Viral Structural Proteins/biosynthesis , Magnaporthe/genetics , Open Reading Frames/physiology , RNA Viruses/metabolism , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Viral Structural Proteins/genetics
20.
J Gen Appl Microbiol ; 57(4): 207-17, 2011.
Article in English | MEDLINE | ID: mdl-21914969

ABSTRACT

A spontaneous non-pathogenic variant (Cong:1-2) derived from Fusarium oxysporum f. sp. conglutinans (Cong: 1-1), a causal agent of cabbage yellows, carries biocontrol activity for cabbage yellows. We found a GMC oxidoreductase (ODX1) among the proteins expressed much more in Cong:1-2 than Cong:1-1 by 2D-DIGE comparison. GMC oxidoreductases have been reported to be involved in biocontrol activity of several plant pathogenic fungi. The gene encoding ODX1 in Cong:1-2 was cloned, and targeted disruption of the gene in Cong:1-2 did not affect its biocontrol activity, suggesting that GMC oxidoreductase is dispensable for biocontrol activity in the fungal biocontrol agent.


Subject(s)
Brassica/microbiology , Fusarium/enzymology , Oxidoreductases/genetics , Pest Control, Biological , Plant Diseases/microbiology , Chromosome Mapping , Cloning, Molecular , DNA, Fungal/genetics , Fungal Proteins/genetics , Fusarium/genetics , Fusarium/pathogenicity , Mutation , Oxidoreductases/metabolism , Phylogeny , Plant Roots/microbiology , Seedlings/microbiology , Two-Dimensional Difference Gel Electrophoresis , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...