Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Transl Med ; 17(1): 243, 2019 07 25.
Article in English | MEDLINE | ID: mdl-31345229

ABSTRACT

BACKGROUND: Despite of medical advances, the number of patients suffering on non-healing chronic wounds is still increasing. This fact is attended by physical and emotional distress and an economic load. The majority of chronic wounds are infected of harmful microbials in a protecting extracellular matrix. These biofilms inhibit wound healing. Biofilm-growing bacteria developed unique survival properties, which still challenge the appropriate wound therapy. The present in-vitro biofilm models are not suitable for translational research. By means of a novel in-vivo like human plasma biofilm model (hpBIOM), this study systematically analysed the influence of 3 probiotics on the survival of five clinically relevant pathogenic microorganisms. METHODS: Human plasma was used to produce the innovate biofilm. Pathogenic microorganisms were administered to the plasma. By stimulating the production of a fibrin scaffold, stable coagula-like discs with integrated pathogens were produced. The five clinically relevant pathogens P. aeruginosa, S. aureus, S. epidermidis, E. faecium and C. albicans were challenged to the probiotics L. plantarum, B. lactis and S. cerevisiae. The probiotics were administered on top of the biofilm and the survival was quantified after 4 h and 24 h of incubation. For statistics, two-way ANOVA with post-hoc Tukey's HSD test was applied. P-value > 0.05 was considered to be significant. RESULTS: SEM micrographs depicted the pathogens on the surface of the fibrin scaffold, arranged in close proximity and produced the glycocalyx. The application of probiotics induced different growth-reducing capacities towards the pathogens. B. lactis and S. cerevisiae showed slight bacteria-reducing properties. The survival of C. albicans was not affected at all. The most antimicrobial activity was detected after the treatment with L. plantarum. CONCLUSIONS: This study successfully reproduced a novel human biofilm model, which provides a human wound milieu and individual immune competence. The success of bacteriotherapy is dependent on the strain combination, the number of probiotics and the activity of the immune cells. The eradicating effect of L. plantarum on P. aeruginosa should be emphasized.


Subject(s)
Biofilms , Plasma/microbiology , Probiotics/therapeutic use , Candida albicans , Enterococcus faecium , Humans , Pseudomonas aeruginosa , Saccharomyces cerevisiae , Staphylococcus aureus , Translational Research, Biomedical , Wound Healing
SELECTION OF CITATIONS
SEARCH DETAIL
...