Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Anim Reprod Sci ; 253: 107252, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37209522

ABSTRACT

Stress situations can be essential to trigger reproduction in fish; however, it may also inhibit it. One of those situations involves the release of the conspecific alarm substance (CAS), a natural stressor, into the water by specific fish epidermal cells after a predator attack. Little is known about the effects of that substance on fish reproduction. This study aimed to evaluate the effects of CAS exposure on the oogenesis and reproduction of the twospot astyanax Astyanax bimaculatus before the hormonal induction for artificial reproduction. No macroscopic or cellular changes in the ovaries were observed for the females exposed to CAS, and the oocyte stages show all females in the same phase of maturation (Spawning Capable). Females exposed to CAS spawned 20 min before the females without exposure. On the other hand, they ovulated only once, whereas the females from the control group ovulated multiple times for approximately two hours after hormonal induction. Moreover, the precocious ovulation of the females submitted to CAS did not generate offspring, since all generated zygotes did not develop. In contrast, the control group females produced more than 11 thousand healthy larvae. Exposing the female fish to CAS during their reproductive management in captivity may reduce breeding success.


Subject(s)
Characidae , Reproduction , Female , Animals , Oogenesis , Oocytes , Ovulation
2.
Theriogenology ; 198: 153-163, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36586353

ABSTRACT

Zebrafish is an important animal model, thousands lines have been developed, thus having a great need for their preservation. However, the cryopreservation of fish oocytes is still limited and needs improvement. The sodium alginate hydrogel, in addition to providing support for the cells, has been shown to be a potential cryoprotectant. Therefore, the aim of this study was to evaluate the sodium alginate hydrogel encapsulation technique efficiency during zebrafish ovarian tissue vitrification. The encapsulation methodology was standardized in the first experiment. In Experiment 2, we evaluated four vitrified groups: standard protocol without encapsulation (VS); encapsulated with cryoprotectants (VS1-A); encapsulated with half the cryoprotectants concentration (VS2-A); encapsulated without cryoprotectants (VA). VS treatment (54.6 ± 12.3%; 23.7 ± 9.9%; 12.6 ± 5.0%) did not differ from the VS1-A and VA showed a lower membrane integrity percentage (1.2 ± 1.4%; 0.3 ± 0.6%; 0.5 ± 1.5%). Mitochondrial activity was significantly greater in non-encapsulated treatment (VS) when compared to the encapsulated treatments. VS1-A and VS obtained the lowest lipid peroxidation (39.4 ± 4.4 and 40.5 ± 3.3 nmol MDA/mg respectively) in which VS was not significantly different from the VS2-A treatment (63.6 ± 3.1 nmol MDA/mg), unlike, VA obtained the highest lipid peroxidation level (124.7 ± 7.9 nmol MDA/mg). The results obtained in this study demonstrate that the sodium alginate hydrogel encapsulation technique did not have a cryoprotective action, but maintained the membrane integrity when used the standard concentration of cryoprotectants. However, halving the cryoprotectant concentration of fragments encapsulated in alginate hydrogel did not cause an increase in lipid peroxidation. In addition, it provided support and prevented the oocytes from loosening from the tissue during the vitrification process, being an interesting alternative for later in vitro maturation.


Subject(s)
Vitrification , Zebrafish , Animals , Hydrogels , Cryopreservation/methods , Cryopreservation/veterinary , Oocytes , Cryoprotective Agents , Alginates
3.
Zygote ; 29(3): 194-198, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33433308

ABSTRACT

This study describes the embryonic development of Moenkhausia oligolepis in laboratory conditions. After fertilization, the embryos were collected every 10 min up to 2 h, then every 20 min up to 4 h, and afterwards every 30 min until hatching. The fertilized eggs of M. oligolepis measured approximately 0.85 ± 0.5 mm and had an adhesive surface. Embryonic development lasted 14 h at 25ºC through the zygote, cleavage, blastula, gastrula, neurula, and segmentation phases. Hatching occurred in embryos around the 30-somites stage. The present results contribute only the second description of embryonic development to a species from the Moenkhausia genus, being also the first for this species. Such data are of paramount importance considering the current conflicting state of this genus phylogenetic classification and may help taxonomic studies. Understanding the biology of a species that is easily managed in laboratory conditions and has an ornamental appeal may assist studies in its reproduction to both supply the aquarium market and help the species conservation in nature. Moreover, these data enable the use of M. oligolepis as a model species in biotechnological applications, such as the germ cell transplantation approach.


Subject(s)
Characidae , Animals , Blastula , Embryonic Development , Phylogeny
4.
Zygote ; 28(6): 453-458, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32811578

ABSTRACT

The seminal characteristics of Moenkhausia oligolepis are described. Three males were induced with a single dose of carp pituitary. Semen was collected 6 h after induction, and diluted in dibasic sodium phosphate extender solution. For motility analysis, 1 µl of diluted semen was added to 10 µl of distilled water to achieve gamete activation. The average duration of total motility was 76.67 s; while the average sperm motility rate at intervals of 15 s was 95.3, 85.3, 59.6, 31.7, 13.0, 4.6 and 1.2%. To determine sperm concentration in samples, 0.5 µl of semen was diluted with 500 µl of glutaraldehyde. An aliquot of 10 µl of this dilution was utilized for cell counting. An average count of 4.97 × 109 ± 3.46 sperm/ml was obtained. Morphological analyses were performed using eosin-nigrosine dye; 20.33% of the sperm were observed to be dead. Live sperm, comprising the other 79.67%, had an average length of approximately 30 µm, with a head diameter of 4.488 ± 0.7 µm; and a flagella plus mid-piece length of 26.071 ± 12.4 µm. Of those sperm, 69% had a normal morphology, while 31% had primary and secondary abnormalities. The observed abnormality rate did not have a detrimental effect on artificial fertilization potential for the species. The description of the seminal characteristics of a species is one of the most important sets of information required for artificial reproduction of fish in captivity. It also contributes significantly to the total biological knowledge of the studied species.


Subject(s)
Sperm Motility , Animals , Fishes , Male , Semen , Semen Preservation , Sperm Count , Spermatozoa
SELECTION OF CITATIONS
SEARCH DETAIL
...