Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
ACS Omega ; 8(14): 13285-13299, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37065033

ABSTRACT

The adsorption isotherms of azo dyes on a newly synthesized titania-doped silica (TdS) aerogel compared to silica aerogels and activated charcoal (AC) are systematically investigated. Monolithic TdS aerogels were synthesized by the cogelation process followed by supercritical drying of tetraethyl orthosilicate (TEOS) as a gel precursor and titanium(IV) isopropoxide (TTIP) as a metal complex precursor for co-polymerization in ethanol solvent. An acid-base catalyst was used for the hydrolysis and condensation of TEOS and TTIP. The effect of Ti4+ doping in a silica aerogel on the mesoporous structure and the adsorption capacity of methylene blue (MB) and crystal violet (CV) dyes were evaluated from the UV-vis absorption spectra. In order to compare the adsorption isotherms, the surface areas of silica and TdS aerogels were first normalized with respect to AC, as adsorption is a surface phenomenon. The azo dye equilibrium adsorption data were analyzed using different isotherm equations and found to follow the Langmuir adsorption isotherm. The maximum monolayer adsorption capacities for the adsorbent TdS aerogel normalized with the AC of the Langmuir isotherm are 131.58 and 159.89 mg/g for MB and CV dyes, respectively. From the Langmuir curve fitting, the Q max value of the TdS aerogel was found to increase by 1.22-fold compared to AC, while it increased 1.25-1.53-fold compared to the silica aerogel. After four cycles, regeneration efficiency values for MB and CV dyes are about 84 and 80%, respectively. The study demonstrates the excellent potential and recovery rate of silica and TdS aerogel adsorbents in removing dyes from wastewater. The pore volume and average pore size of the new aerogel, TdS, were found to be lower than those of the silica aerogel. Thus, a new TdS aerogel with a high capacity of adsorption of azo dyes is successfully achieved.

2.
J Phys Chem B ; 117(50): 16249-59, 2013 Dec 19.
Article in English | MEDLINE | ID: mdl-24251447

ABSTRACT

The osmotic coefficient measurements for binary aqueous solutions of 2,2,2-cryptand (4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8] hexacosane) in the concentration range of ~0.009 to ~0.24 mol·kg(-1) and in ternary aqueous solutions containing a fixed concentration of 2,2,2-cryptand of ~0.1 mol·kg(-1) with varying concentration of KBr (~0.06 to ~0.16 mol·kg(-1)) have been reported at 298.15 K. The diamine gets hydrolyzed in aqueous solutions and needs proper approach to obtain meaningful thermodynamic properties. The measured osmotic coefficient values are corrected for hydrolysis and are used to determine the solvent activity and mean ionic activity coefficients of solute as a function of concentration. Strong ion-pair formation is observed, and the ion-pair dissociation constant for the species [CrptH](+)[OH(-)] is reported. The excess and mixing thermodynamic properties (Gibbs free energy, enthalpy, and entropy changes) have been obtained using the activity data from this study and the heat data reported in the literature. Further, the data are utilized to compute the partial molal entropies of solvent and solute at finite as well as infinite dilution of 2,2,2-cryptand in water. The concentration dependent non-linear enthalpy-entropy compensation effect has been observed for the studied system, and the compensation temperature along with entropic parameter are reported. Using solute activity coefficient data in ternary solutions, the transfer Gibbs free energies for transfer of the cryptand from water to aqueous KBr as well as transfer of KBr from water to aqueous cryptand were obtained and utilized to obtain the salting constant (ks) and thermodynamic equilibrium constant (log K) values for the complex (2,2,2-cryptand:K(+)) at 298.15 K. The value of log K = 5.8 ± 0.1 obtained in this work is found to be in good agreement with that reported by Lehn and Sauvage. The standard molar entropy for complexation is also estimated for the 2,2,2-cryptand-KBr complex in aqueous medium.

3.
J Phys Chem B ; 111(48): 13645-52, 2007 Dec 06.
Article in English | MEDLINE | ID: mdl-17988113

ABSTRACT

Data on osmotic coefficients have been obtained for a binary aqueous solution of two drugs, namely, promazine hydrochloride (PZ) and chlorpromazine hydrochloride (CPZ) using a vapor pressure osmometer at 298.15 K. The observed critical micelle concentration (cmc) agrees excellently with the available literature data. The measurements are extended to aqueous ternary solutions containing fixed a concentration of alpha-cyclodextrin (alpha-CD) of 0.1 mol kg(-1) and varied concentrations (approximately 0.005-0.2 mol kg(-1)) of drugs at 298.15 K. It has been found that the cmc values increase by the addition of alpha-CD. The mean molal activity coefficients of the ions and the activity coefficient of alpha-CD in binary as well as ternary solutions were obtained, which have been further used to calculate the excess Gibbs free energies and transfer Gibbs free energies. The lowering of the activity coefficients of ions and of alpha-CD is attributed to the existence of host-guest (inclusion)-type complex equilibria. It is suggested that CPZ forms 2:1 and 1:1 complexed species with alpha-CD, while PZ forms only 1:1 complexed species. The salting constant (ks) values are determined at 298.15 K for promazine-alpha-CD and chlorpromazine-alpha-CD complexes, respectively, by following the method based on the application of the McMillan-Mayer theory of virial coefficients to transfer free energy data. It is noted that the presence of chlorine in the drug molecule imparts better complexing capacity, the effect of which gets attenuated as a result of hydrophobic interaction. The results are discussed from the point of view of associative equilibria before the cmc and complexed equilibria for binary and ternary solutions, respectively.


Subject(s)
Chlorpromazine/chemistry , Promazine/chemistry , Water/chemistry , alpha-Cyclodextrins/chemistry , Thermodynamics
4.
J Phys Chem B ; 110(37): 18583-93, 2006 Sep 21.
Article in English | MEDLINE | ID: mdl-16970487

ABSTRACT

Osmotic vapor pressure and density measurements were made for aqueous alpha-cyclodextrin (alpha-CD) solutions in the temperature range between 293.15 and 313.15 K. The experimental osmotic coefficient data were used to determine the corresponding activity coefficients and the excess Gibbs free energy of solutions. Further, the activity data obtained at different temperatures along with the enthalpies of dissolution (reported in the literature) were processed to obtain the excess enthalpy and excess entropy values for the solution process. The partial molar entropies of water and of alpha-cyclodextrin were calculated at different temperatures and also at different concentrations of alpha-CD. Using the partial molar volume data at infinite dilution, the solute-solvent cluster integrals were evaluated which yielded information about solute-solvent interactions. The application of McMillan-Mayer theory of solutions was made to obtain osmotic second and third virial coefficients which were decomposed into attractive and repulsive contributions to solute-solute interactions. The second and third osmotic virial coefficients are positive and show minimum at 303.15 K. The Kirkwood-Buff (KB) integrals G(ij), defined by the equation G(ij) = f(infinity)0 (g(ij)- 1)4pir(2) dr, have been evaluated using the experimental osmotic coefficient (and hence activity coefficient) and partial molar volume data. The limiting values of KB integrals, G(ij)(0) are compared with molecular interaction parameters (solute-solute i.e., osmotic second virial coefficient) obtained using McMillan-Mayer theory of solutions. We found an excellent agreement between the two approaches.


Subject(s)
Chemistry, Physical/methods , alpha-Cyclodextrins/chemistry , Entropy , Hot Temperature , Models, Statistical , Osmosis , Software , Solubility , Solutions , Solvents/chemistry , Temperature , Thermodynamics , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...